Software Communications Ar chitectur e Specification

M SRC-5000SCA
V2.1
13 July, 2001

Prepared for the
Joint Tactical Radio System (JTRS) Joint Program Office

Prepared by the
Modular Software-programmable Radio Consortium
under Contract No. DAAB15-00-3-0001

M SRC-5000SCA
rev. 2.1

Revision Summary

1.0

Formal release for initial validation.

11

Incorporate approved Change Proposals, numbers 97, 99, 110, 160, 161, 162, 164, 171,
177,178, 179, 180, 193, 195, 201, 204, 205, 208, 209, 211, 216.

2.0

Incorporate approved Change Proposals, numbers 39, 105, 119, 147, 175, 186, 191, 192,
210, 217, 218, 219, 220, 222, 223, 225, 226, 227, 229, 231, 232, 235, 237, 240, 243, 249,
255, 258, 266, 270, 275, 276, 277, 278, 282, 283, 285, 299, 307, 308, 310, 311, 332, 335,
336, 337, 341, 342, 343, 344, 345.

2.1

Incorporate approved Change Proposals, numbers 88, 102, 142, 306, 316, 353, 357, 358,
359, 360, 365, 366, 367, 369, 370, 371, 372, 373, 419, 468, 471, 472, 473, 475, 476, 477

Changes from the previous revision, other than editorial corrections, are marked with change bars
in the margins.

| Change Proposals are controlled by the JTRS Change Control Board. CPs incorporated into the

SCA are considered "closed" and can be seen on the JTRS web site at:
www.jtrs.sarda.army.mil/docs/documents/sca_ccb.html.

MSRC-5000SCA

rev. 2.1
Table of Contents

[FOREWORD VII|
1 INTRODUGCTION....iiiiiiiiticieeese e seee et e steeseeeeesseesseeseesseesseesessseesseesseassesseensesseesseessens 1-1
I S o PP 1-1
(2 o] o o] 11T o= OO PP UPUPPRPPRPN 1-2
f.2.1 Joint Technical Architecture COMPIIANCE.covrvverreersreesreseeesrneensreseseseeeseeneees 1-2
.3 Document conventions, Terminology, and Definitions.ocooeeeeeeeeeeeereeeeeeeenrenn 1-2
.3.1 Conventions and TEMMINOIOGY.coeveveveueuereeereretieieeeieteteteeeeeeteteteeereteteteeeneeererereenenenene 1-2
1.3.1.1 Unified Modeling LANQUAJE.ccuveueeeeeieeieeeeeeeeeeeeseeieaneesieeeasreeneeeneesneeneenns 1-2
1.3.1.2 Interface DefinitioN LANQUAOE.ocuveeiiiieeiiiiiiiiiiieeiieeeeeieieeeeeiveeesssnseessssnsseneesns 1-3
1.3.1.3 eXtensible Markup LangUAagE.c.ccveeueieereeieeieiecesteeceeseesie e nieseesneenee e 1-3
(T I S @ o g @] oo T PP 1-3
1.3.1.5 ReqUIreMentS LANQUAOE.c..eccueeiueeeerieeuieeieeetieeteeetee et eeteeeteeeteeseeesseesseeenseesseesn 1-3
1.3.1.6 CF Interface and Operation 1dentifiCatioN.ccoveereiiereeiinieiieeesieeeieseeen 1-3
[1.3.2 DEFINITIONS. . ..cucuiieeeiiectie ettt esesscsssessessesssssssesssssessnsesesesessnsssessnsessnsesessnsessnsnsessnsssesssans 1-3
1.4 DOCUMENT CONTENL.oiiiiiiiiiiiciiie ettt e etee e e et eeent e enaeeeeaeeeanseeesnseeeenseeenseeeeseeesnnes 1-4
1.5 APPIICADIE DOCUMENTS.coceeiiiiieiiieeeiiieeeeeeiieeeeee e e e eeeteeeasseseeesssanseeesssssseessessseesessssseeeesans 1-4
1.5.1 Government DOCUMENES. ... 1-4
1.5.2 COmMMErCIal DOCUMENES.ueeieieiesieeieetieeieeieeeesteeieeneesteeneesseesseeeeeseesseensesseesseesseseessens 1-4
OV = R AT =Y A — 2-1|
P.1 Architecture Definition MethodolOgy.ccccoueeeiieiieiiiieiece e 2-1
R.2 Al CHITECIUN € OVEI VIBW. ...ttt e et e st e et e e sseeesseesseeenseesseeanseesseesnseenseeanns 2-1
P.2.1 Overview - SOftWare ArChItECIUIE.ccccuveueeveereeeeeeieteeeeteeteeeereteeeeesteereesreeresssessenens 2-1
.2.1.1 BusLayer (Board SUPPOIt PACKAGE).c.eevveeieiiieiiieiieeeieeeee e 2-2
2.2.1.2 Network & Serial Interface SerVICES. ..o e eieeeeeseesieeeesreeseesreesseeneeas 2-2
2.2.1.3 Operating SYStEM LaYEr........cccoiiiiiiieieiece ettt ae e 2-2
R.2.1.4 COIE FramMEWOIK.cuieieieeeeeesiese et eie st es e e e st eseesseeereeseeeneesseeseeneesseenseeneens 2-3
2.2.1.5 CORBA MIAAIOWAIE.ccuieiuiiiiieeie ettt e e e sreeenreenneea 2-3
P.2.1.6 APPHCAHON LAYEN.......ccueeeeeeieeieeeeeeeeeeeeeee e eee et eeaeteeteeneeeneeeeeneesseesesseesseeneens 2-3
P.2.1.6.1 ADDICATONS. ...oeceeeeeseeesereereenseseeeeseeeeseeeesesneeseeessnsneessncnssnenssesneesncneseences 2-4
R.2.1.6.2 AGBPLENS. ...ttt ettt p e e enens 2-4
P.2.1.7 Software Radio FUNCtiONal CONCEDLS.c.evveerereeeereeerereeeereeeeeeteeeerssensseseesreensnns 2-5
P.2.1.7.1 Software ReferenCe MOGE.ccueveiieieeieeeeeeeeee et 2-5
2.2.1.7.2 ModemDevice FUNCHONAIITY.ooeeeiiieiieiceeeeeee e 2-7
2.2.1.7.3 NetworkResource and LinkResource FUNCtionality.cccuevvvveeereeescnerneeennen. 2-8
2.2.1.7.4 1/0DeVICe FUNCHIONAIITY.ccueiiiiiiiiieiieeieciteie ettt 2-9
2.2.1.7.5 SecurityDevice FUNCHONAIITY.c..ccocuuiiiiiiieiieeeie e eeaee e 2-10
2.2.1.7.6 UtilityResoUrce FUNCHONAIITY.c.covieeiieieiieeeeeeeeeee s 2-12
P.2.1.8 SYSIEM CONIIOL.c.ccveueeeietiieeietieteeeteeteeteietee ettt eeteteeteeteeeseereseeseeseereneeseesennens 2-12
P.2.2 NEWOIKING OVEIVIEW. ...oeeeeeeeeeeeeeeeseveseseeeesneensesneaesneessneeeseseeessneesseeeeeesneneas 2-13
R.2.2.1 External Networking ProtOCOIS.curiiiririeiiiiiiisiciceeecscc e 2-14

MSRC-5000SCA

rev. 2.1

2.2.2 SCA Support for External Networking Protocols. ..o 2-16
2.3 Overview - Hardware ArchiteCture.ccoeieiiieieiiic s 2-17
3 SOFTWARE ARCHITECTURE DEFINITIONcccoiiiiiiieiiceeeeeeeeeseeeeee e 2-18
3.1 OpPerating ENVIFONMENT.cc.oiiiieieiiceeceeeeeeee ettt et e et eeneeereeeneeesreeeneeeane 31
SN T RS L= L 31
3.1.2 MiddleWare & SBIVICES. .. i iiiiiie ittt et est e ereesseeeseesseeeseesseeesseesseeenseeaseeanseeaseesnseeans 32
25 R | = 3-2
3.1.2.2 CORBA EXIENSIONS.ocvieieiiitieiieeiieeeeeeeee ettt e eneeeteesaeeeseesseeenseesseaenseesseean 3-2
I N T T s AL < N —— 3-2
B.1.2.3 LOG SEIVICE. vttt eeeieseeteteseseseesesesseseseesesessesensaseseasesenesnes 3-2
B.1.2.3.1 USE Of LOG SEIVICE.....ucuiuiiiericectisseetiescsesessessssssssessessssssesnsessssssssnsessssssesnsesssssees 3-2
3.1.2.3.2 LOGSEIVICEMOUUIE.oovoveveeeeerreeeeeeeeeeeeeeeeeerereeeeeeeeeneneeeenenenneneneenanennenens 3-3

T 0 T T 1 o PP 3-4
B.1.3 COr€ FrameWOrK. ... oo 3-13
B.1.3.1 Base AppliCation INEEITACES.cocveeereireieriiieieticteeeeteet ettt ere e ereae 3-14
S e S 3-15
ST T W (= @Yot = 3-17
3.1.3.1.3 Testabl@ODJECL.c..ecueeieeeieeeeeeee ettt ere e 3-18
3.1.3.1.4 POrTSUPPIIENc.veeeieeieecee ettt ete et eereeereesneeereeeneeenreenes 3-20
3.1.3.1.5 PrOPartySEL. ..o 3-21
3.0.3. 0.0 RESOUIttt itttk ettt et sttt e st e st e e ssb et s st e sbb e e sbneesnn e e snbeessnneeennneeean 3-23
B.1.3.1.7 RESOUICEFACIONY.vvvevvceerevcerereeresereresierereeierereseressnesesenenesneseeesneneerereeens 3-26
B.1.3.2 Framework CONtrol INtEITaCeS.c.coeeeuveeeeeeeiieeeeteieeeisieseesesseeeesenseeeesnsenans 3-29
3.1.3.2.1 APPHCAtiON. ..o 3-29
3.1.3.2.2 APPlICALIONFACIOTY.eeeeeeeeeeieieeeeeieeeteeeeieesteeeeeieeseeeneaeseesseeneeeneesseeneeeneesseenes 3-35
3.1.3.2.3 DOMAINMANAOETvvveiiieiiieeeeieiieeeeieieeeeeeteeeeeeseeeesssseesssssresessaseeessasssesessssseees 3-40
ST 2 N o L= Y, o= 3-53
3.1.3.2.5 L0oAdablEDEVICE.ccoveiuiiiiieeieeeeeeee e 3-62
3.1.3.2.6 EXECULADIEDOVICE. ...ttt nee st e e eneenreenes 3-65
3.1.3.2.7 AQOrEQAIED BVICE. ...ttt e e sr e e eneenee s 3-68
3.1.3.2.8 DEVICEMANAGEvveeeieeiiieeeeeiieeeeeeieeeeeteteesseseeeesseseeesssseseesessaseeesssssrreessssneees 3-70
B.1.3.3 Framework SErviCes INEITACES.ovveeveeereeeeeeeeeeseeeereseeesneseeeesnneseesnneseeneeees 3-78
T T 0t e 1 PP 3-78
3.1.3.3.2 FIlES SO, ..o 3-82
RN e 3-87]
3.0.3.3: T IEr . ettt ettt et e it e et e ese e st esseehee s e easeeneeseeaseehneereenneenneaneenreennesrneans 391
B.1.3.4 DOMAIN PIOTITE. ...ttt 3-91
3.1.3.4.1 Software Package DESCIPLON.c..ccveeieieeieeeeeeeeeeeeee e 3-92
3.1.3.4.2 Software Component DESCIPLON...........cueecuieieeeereeciieeteeeieeeiteeeeeereeereeereeereeens 3-92
3.1.3.4.3 Software ASSembBlY DESCIIPLON.oouveieieiiieieeeeeeee e 3-92
3.1.3.4.4 PropertieS DESCIDION.iiiiiiiiiiististisiestisiesieeeeessesssesseseesseseesnesaesseneeseasesseessees 3-92
3.1.3.4.5 Device Package DESCIIPION.c.coovuevereeeeereeerereremeeeererereereererenennennsnerneeen. 3-92
3.1.3.4.6 Device Configuration DESCIPLON.ccuueeeeieeeiieietiieeetieeeieeeeieeeeseeeeeieeesreeeans 3-93
3.1.3.4.7 Profile Descriptor................... OO POV PO PP PO PP PPV VPO PP PPPPIRPPOPS 3-93
3.1.3.4.8 DomainManger Configuration DESCIIPLON...........c.eccueevereeeeeieesieeiesieeseeeeeseeenns 3-93

MSRC-5000SCA

rev. 2.1

B.1.3.5 Core Framework Base TYPES.c.icuiiceerieecsiscssssssessssssessssessssssessssssssssesssssssssssnas 3-93
B.1.35.1 DAATYPE. c.evveeeeeereeeeeeeeeeeeeceerereeeeeeerernennrereneenenessereneneneneenereenenenesnannenens 3-93
3.1.3.5.2 DEVICESEQUENCE.c.evveeieeieeeetieeettieeeteieeetteeeteeeeteeessseesesseesasseesaseeesaseeesnsesessseneas 3-93
3.1.3.5.3 FIIEEXCEPUION. ..o 3-93
3.1.3.5.4 INVAlIAFITENGIME.ccoocouiiiiieciiecii ettt ereeeaaeereeenns 3-93
3.1.3.5.5 INValIdOD]ECIREFEIEINCE. ...t eeteee e e e e e e ssnsreeesennees 3-94
3.1.3.5.6 INVAIIAPTOFIIE.ooveeceeecteece ettt et ereenreeennas 3-94
3.1.3.5.7 OCELSEOUEBNCE.eeieiieeeeeeiee e ee e tee et ee et e et aeeteeeasreeeasseeesseeeenseeeenseeesnseeesns 3-94
3.1.3.5.8 PrOPEITIES. ...cuvievieeeiiectie ettt ettt et et eete et eeneeeeseeenreeebeeenreeaseesnreeseeanns 3-94
3.1.3.5.9 SHINGSEQUENCE. ..ottt ettt e e e e e eneeeneesneeneeeneeses 3-94
3.1.3.5.10 UNKNOWNPTOPEITIES.coveiiiiiiiii et eeeieesseteeeeseeteeaassenneesssesnsesesssneeeesssnnes 3-94
3.1.3.5. 11 DEVICEASSI GNMENTTYPE. ...vvvverereeeeeeeeeeeeceerereeeeeeereneeneeenenenenenennanennenes 3-94
3.1.3.5.12 DeViCEA SSIGNMENTSEGUENCE.veeerrieieiieetieeeteeeenteeeenteeeeseeeseseeesseeesseessseeans 3-94

B.2 Applications.................. s 3-95
B.2.1 Genera Application REQUITEBMENES.c.ccueveuiieeieieiieieieteeteeieteet et ereeeeneereas 3-95
B.2.1.1 OS SEIVICES. .eiuuiiieieieiuiiesieseseeeseseeseseeesosessesessssasssssssssssssesessessasssssssensasassesssssssanas 3-95
3.2.1.2 CORBA SEIVICES. ...oeeiteeiieecteecteeetee et esteesiteestessseessesssesssesssseessessssesssesssesssessnseenns 3-95
3.2.1.3 CF INEITACES. ...oeocuvieeeieeeie ettt e et e e eteeeeneeeenreeeenreas 3-95
S N e N e S s — 3-95
B.2.2.1 Utility APPHICAONS.cveeeveriretieteeeeteteeieteeeetete et teeeteseereteseesenereseenesesnareneanes 3-97
B.2.2.1.1 INSAllEr ULHIITY. ..ottt sttt esscsssesesssssaes st ssssessnsesssnsessnsssesnassans 3-97
B.2.2.2 SEIVICE APIS. ...ttt 3-99
3.2.2.2.1 SErVICE DEFINITIONS.veccvieiiieeieeieeeteeeeeee ettt e et e enreeereeenees 3-99
3.2.2.2.2 APl Transfer MEeChaniSIMS.ccccouiiiiiieiiiiecciee et 3-99
e o e N = —— 3-100
RN S N 3-102
3.3.2 CORBA SEIVICES. ...veicuiietieiteeeitee ettt et e seeeiteesteeeateesaeesbeessaesseessessaseessessseessessnsesssessnnes 3-102
3.3.3 CF INEEITACES. ..ottt et e e et e et e e eeteeeeteeeenreeeenseeeasseeeaseeens 3-102
3.3 PrOFIIE......ccuiiiieccte ettt e et e et e et e eneeebeeeneeereeeneeebeeeneeenreenneas 3-102
B.4 General SOftWAr @ RUIES.ccuoveeeieeeeeeeeteeeeeeeeeeeteeeveteeeteeeneteneeeseenssessresssnesenssseneas 3-102
B.4.1 Software Development LANQUAGES.c.oceuiiceerireseiecsesiesssssessessssssssssessssssessssessssssnns 3-103
BATLT NEOW SOTIWAE. oeeceoeeeeeeeeeeeeeeeeeeeeee oo s e eeee e eesenen e eseeeeenenee s nnenenensennneneneneen 3-103
3.4.1.2 LEJACY SOMIWAIE.......ccuvieiiviiiitiie ettt e et e e etee et eeeeneeeebeeesnbeeesnseeeanreeennes 3-103

1 HARDWARE ARCHITECTURE DEFINITION......cccoviiiiiiiiiiiciiiiii e 4-1
1.1 BASIC APPIOACK........iiieiiiie ettt e e et e et e e et e eteeeteeenseeaseesnreeabeeanreeareeenreeereesnne 4-1
.2 G aSS Sl UG UL . . uteiiitiiiitii e it ie et ee e st eeeeseeeasseeesaseeesssseeanseeenseeessseesnnseeanseesenneesansessnneesanseesnnes 4-1
1.2.1 TOP LEVEl Class SITUCIUIE.ceieeiecieeie ettt ee s e s este e sneesneeneeneennens 4-2
4.2.2 HWMOAUIE(S) ClaSS SITUCKUE.eevieeieeiieeeeee ettt ea e eereeeneeenseeanes 4-3
1.2.3 Class Structure With EXIENSIONS...........ccuveiuieiiieciiecieccee ettt etee et eeneeereeeneeenns 4-3
1.2.3.1 RF CIaSSEXIENSION.ccvviiiiiiiiiie ettt eteeeeateeeeaeeeeeneeesreeeenneeeenns 4-4
4.2.3.2 M0Odem Class EXIENSION.uiiiieiiiiitieiieesieeseeeteeseeeseesssesaseesseeeseessseeseessneeseesseeas 4-5
1.2.3.3 Processor Class EXIENSION.c..eeecuieeiieeccieee et e eteeecteeeevee et e eeareeeeaeeesneeeenneeeenns 4-6
.2.3.4 INFOSEC ClBSS.......cciviiitieieieeieeeieeeteeeeeeteeeteeeteeeuteeeseesseeeseesseesaseesseeenseesseessseesseesn 4-7
1.2.3.5 1/O ClassS EXIENSION.c.ueiiiuiieiiie ettt et e et eteeeeteeeeareeeeaeeesneeesreeesnreeeenns 4-8
{.2.4 AribUte COMPOSLION.cveeveeeetieteieueetieteeeteeteeteeeteeteeteseeteeseeeseesesseseeseerenseseeseeseneesessens 4-8

MSRC-5000SCA

rev. 2.1

B3 DOMAIN Gl ILON B, tiiiiiieiiiitesiesteiteseesseseaaseessessesseesseessesseesseassesssenseaseesssasesneessesnsesseesseansnan 4-9
.4 Performance REIALEA ISSUES.ccvieiiuieiiitie et cteeectee ettt ectee et e e eteeeereeeeaaeeenneeesneeeeanes 4-9
4.5 General HardWar E RUIES.oc.eiiiiiiiicie ettt e s et e sneeebeesnreereeeneeeans 4-9
A.5.1 Device Profile. ..o 4-9
1.5.2 Hardware CritiCal INLEITACES.ccueccuieiiiiii ettt eaa e saaeereens 4-10
521 INtEITACE DEFINITION. .veeeeeeeeeeeeeeeseeeseeeeeeeeeseeesnseeeeseceesnseeeeseenesnceseeerences 4-10
B.5.2.2 Interface StaNAards.............cooeuioirieiiicieisieeiees e 4-10
(.5.2.2.1 INtEITACE SEIECHON. ...ttt eeete e eeneeeseeneseenereneenereanerens 4-10

1.5.3 FOIM FACION.cccciie ettt e ettt e e e et e e e enteeeeeaneeeeaeanneeeaeennneeaeanns 4-10
N e A 4-10

5 SECURITY ARCHITECTURE DEFINITION ...ouiiiiiiiieieisiseieissssessssssssssesnsessesnssssnsssssenes 5-1
B.1 Additional CF Security REQUITEMENES.cocoeveeveerrerscerersereresrereserenesrenneenenenneneneennes 51
5.1, 1 ADPITICALION. ..ot ettt et ie et ee e et eeeateeeesbeesseeesnseeesssesesnseeeenseeeasseesaneeesnsenas 5-1
D.1.2 APPlICAONFACIONY. . 51
5.1.3 DOMAINMANAGET -ooooooovesoooocooossooooosesseosoesseeseeoseeseeeseesesseeseeesesseseseseesseeeseesesseeeseesee 51

6 COMMON SERVICESAND DEPLOYMENT CONSIDERATIONScoccoooieiiiiccernes 6-1
5.1 COMMON SYSIEIM SENVICES.ecviieeeitieieeeieeteeiteeieeeteesteeseesseetaeseesseesesseesseessesseesseessesseessesnsens 6-1
6.2 Operational and Deployment CoNSIAEr atioNs.cc.ueeeveeeereeeeiieeeiieeeieeeeieeeeiveeeeveeeeanes 6-1
7 ARCHITECTURE COMPLIANCEcocovviviitieeeeeeeeeeeeeeeee et eae e evesneeas 7-1
7.1 CertifiCation AULNOMITY. .o..ocviicieceeceec et eeneeenes 7-1
7.2 Responsibility for Compliance EValUation.couiiiiiiiiiiiieiieei s s esneesreesneesnnes 7-1
[7.3 Evaluating COMPIIANCE.coocoveveeererreerersreresisreriereresisrerseerensnennesnenesnennennenenserneneenenes 7-1
7.4 REOI ST ALION.eiiiieeeiieieeeeiie e eeteieeee ettt ieeeetetassseseeeessasseeesessessessanneeessssssssesasssesessssnnsessssnsseeesasns 7-1

APPENDIX A. GLOSSARY

APPENDIX B. SCA APPLICATION ENVIRONMENT PROFILE

APPENDIX C. CORE FRAMEWORK IDL

APPENDIX D. DOMAIN PROFILE

MSRC-5000SCA

rev. 2.1
List of Figures

[Figure 1-1. The Architecture Framework and its Relationship to Implementation........................ 1-2
Figure 1-2. Color Coding Used in DOCUMENt FIQUIES..........ccuuveveeieiecieeceeeeeeeeee et 1-3
FigUre 2-1. SOftWAIE SITUCKUIE...........ccuveeieecee ettt ettt ete et e et e eereeenreeebeeenseeaseeeneeenns 2-2
Figure 2-2. Example Message Flows with and without Adapters...........cccoecveveviiciiieicnenene 2-5
Figure 2-3. Software REFErENCE MOUEcooouuiiiieeiiiieeieeeeeii e eeeiee s ettt e eeeeeeesseeeeessssneeeeean 2-5
Figure 2-4. Conceptual Model OF RESOUICES............cocovevreeeeerereeeeeeerereeeeerererereeneererenennenennenes 2-1|
Figure 2-5. Example of MOemM RESOUICES...........cc.ueeeueeeiiieieiiieeeiieeeiieeeieeeetieesieeeenaeeeeseeesreeesanes 2-8
Figure 2-6. Example of Networking RESOUICES. ..o 2-9
Figure 2-7. EXamples Of 1/O RESOUICES.............c..cooooooeoroooreosossesseoseesseessssessseeseeeseseeseeeesereseseees 2-10
Figure 2-8. Examples of Security Devices and RESOUICEScc.uuvviicveiiiiiiiiiieeeeieeeeieeeeevveean 2-11
Figure 2-9. Example of ULiIlity RESOUICES...........ccvccueieeiieeeecieeie s et seesie e e enaeeee e eneaeneenes 2-13
Figure 2-10. External Network Protocols and SCA SUPPOIccvvevveeieeiieeieecieceeceeeieeieaa 2-14
Figure 2-11. SCA-Supported Networking Mapped to OSI Network Moddccuueu.e..... 2-16
Figure 2-12. Hardware Architecture Frameworko..ooveciiieiieieeeeeeeeeeesee e 2-18
Figure 3-1. Notional Relationship of OE and Application to the SCA AEP............cccoeuuvveeennnnn.. 31
FIQUIE 3-2. LOGUMLooooioioeeeeceeeeeeeeeeeeeeeeeeeeeeveneeeeenenenn e nnenennanenesnennnenennenanenenennnnnen 3-5]
Figure 3-3. Core Framework IDL RelatioNShiPSccuveecuvieieiiicieeciie e 3-14
Figure 3-4. PortInterface UML ... 3-15
Figure 3-5. LITeCYCle INEETACE UMLoooooooooocooocoooooooooosseessessesseeseeseseseeseesseeseeseesnens 3-17]
Figure 3-6. TestableObject INtErface UMLocoocuuiiiiiiiiiiieeiis e eeeeeeeeeieeaessnreeeeans 3-19
Figure 3-7. PortSupplier INterface UMLcooiiieiiece et 3-20
Figure 3-8. PropertySet INterface UMLccuooviiiiieiieceeceeeeeeee et 3-22
Figure 3-9. ResoUrce INErface UMLc.oocuieiuieiiiciie ettt etee e eereeenneens 3-24
Figure 3-10. ResourceFactory INterface UMLc.ocooouiiieiiiiiieeeeeseeee s 3-26
Figure 3-11. Application INEITACE UMLccuuviiieeiiiiieciii e eeeeeeseeeaeeseneenesaereeeeas 3-30
Figure 3-12. APPIICAtioN BENAVIONocveveveeeeeeeeeeeeeeeeeeeeereeeeeeeeererenenenerenenennenenenneneneenns 3-34
Figure 3-13. ApplicatioNFACIOrY UMLcccuiiiuiiiiiiiceiie ettt eeeee et e sbeeesnreeeans 3-35
Figure 3-14. ApplicationFactory BeNavior ... 3-40
F igure 3-15. Domai NManager INterface UMLc.coveoeeeeiieeeeeeeeeeeeeeeeeeeee e eee e 3-41
Figure 3-16. DomainManager Sequence Diagram for register DeviceManager Operation......... 3-45
Figure 3-17. DomainManager Sequence Diagram for registerDevice Operation........................ 3-47
FFigure 3-18. DomainManager Sequence Diagram for register Service Operation......................... 3-52
Figure 3-19. DeViCe INtEIfaCe UMc..ccuiiiuieiiiecie ettt e ereeeneeeneeenreens 3-54
Figure 3-20. State Transition Diagram for admMinNStale............coouvvveveiienieiieeseeeeeeeeeeeeas 3-56
Figure 3-21. State Transition Diagram for allocateCapacity and deallocateCapacity................. 3-59
Figure 3-22. Release Aggregated DEVICE SCENAIO............occeveveereeeeerereeeeeererereneeeererennnennenns 3-60
Figure 3-23. Release COMpPOSIte DEVICE SCENAIIOueeeueeeeiieeeeieeeiieeeeieeeieeeteeeeteeeereeesbeeeans 3-61
Figure 3-24. Release Composite & Aggregated Device SCenario ..o 3-61
F igure 3-25. 5. Release Composite Devicein SHUTTI NG | DOWN State Scenario........................ 3-62
Figure 3-26. LoadableDevice INtErfaC UMLocouuiiiicuuiiiiiiiiiiieeiie e eeeieeeeeeeseesaveeeeans 3-63
Figure 3-27. ExecutableDevice InterfaC@ UMLcccocveieiieceiiece e 3-65
Figure 3-28. AggregateDevice INterfaCe UMLcc.oocueeiiiiiiieiiecceece e 3-69
Figure 3-29. DeVIiCeEMaNager UMLccouooviiuieiieiieccie ettt et teeeteeeteeeeeeeneesnneeas 371
Figure 3-30. DeviceManager Startup SCENAITO.oouvevieueeiieeeeiieeieeieeieesieeee et eee e neeeneeses 3-75
Figure 3-31. FIle INtEITaCl UML........ooiieeueiiiiiciie oo eeeee e ee e seeaeeeasesaneeasssnneeasssneeeesans 3-79

MSRC-5000SCA

rev. 2.1

igure 3-33. FileManager Interfac@ UMLcccoooiiiiiiiiiiiiiceece e 3-88
Figure 3-34. Relationship of Domain Profile XML Fil@ TYPES........ccoeveeuveicieiiiiiecieeeiieeeiieans 3-92
Figure 3-35. PushPort Data Interfaces ... 3-96
Figure 3-36. PUITPOIT Dala INEEITACES............cooocoooocoeooesoosiosessioseesseessesesoseeseeeseseeseeeeseeseseees 3-97]
Figure 3-37. Device Instalation Sequence DIagramc...eeveevviiieieiiiiieciiieeeeiiieceeiieeeesneeeeeans 3-98
Figure 3-38. Software Installation Sequence DIagramcccveeeeeereeieseeseseesieeieeseeseesseeneas 3-99
Figure 3-39. Standard and Alternate Transfer MechaniSm.........c.ooveienieiiiinieiseseeee 3-100
FFigure 3-40. Device and DeviceManager Interfaces Relationships............cccovevvvecvvecveecreennnnne., 3-101
Figure4-1. Top Level Hardware Class SITUCIUNEeovieeeeieieeeeceeeeee e 4-2
Figure 4-2. Hardware Module Class SETUCLUIEeeoeeueieeeeeiieeieeiiieeeeeeiiesseeseeeasssseessssssseessan 4-3
Figure 4-3. RE CIaSS EXIENSIONc.coovveeeeeeeeereeeeeeerereeseererenesesenennenenesnenennenennenennenenennanes 4-5]
Figure 4-4. Modem Class EXIENSION............c...ooueeieuieiieieeeetieeeitieeeetieeeteeeesveeeeseeeseseeesseeesseeesssesesnes 4-6
FIQUIE 4-5. PrOCESSOI ClBSS.......iiuiitieieeeeteeee ettt et e e eneesreeneesneesreeneeas 4-7
FIQUIrE 4-6. TNFOSEC CIBSS......ocooeoocooosoesoiooesoosseoseeososssosesssmeseseeeseeeseessesseessesersseessessesseeeseneee 47|
FIQUrE 4-7. 1/O Class EXIENSION........uuiiiiieeiiiiiiieiie et ieeeeteeeseeseeeesssnseeesesssseeessssseesssssseeeesanns 4-8
Figure 4-8. Typica Hardware Device Description using the SCA HW Class Structure................ 4-9|

Vi

M SRC-5000SCA
rev. 2.1

Foreword

Introduction. The Software Communication Architecture (SCA) specification is published by the
Joint Tactica Radio System (JTRS) Joint Program Office (JPO). This program office was
established to pursue the development of future communication systems, capturing the benefits of
the technology advances of recent years which are expected to greatly enhance interoperability of
communication systems and reduce development and deployment costs. The goals set for the
JTRS program are:

— Greatly increased operational flexibility and interoperability of globally deployed systems,
— Reduced supportability costs,

— Upgradeability in terms of easy technology insertion and capability upgrades, and

— Reduced system acquisition and operation cost.

In order to achieve these goals, the SCA has been structured to

— provide for portability of applications software between different SCA implementations,

- leverage commercia standards to reduce development cost,

— reduce development time of new waveforms through the ability to reuse design modules,
and

— build on evolving commercial frameworks and architectures.

The SCA is deliberately designed to meet commercial application requirements as well as military
applications. It is the expectation of the Government that the basic SCA will become a
commercialy approved standard. It isfor this reason that a wide cross section of industry has been
invited to participate in the development and the validation of the SCA. The SCA is not a system
specification, as it is intended to be implementation independent, but a set of rules that constrain
the design of systems to achieve the objectives listed above. The SCA specification version 1.0
established the baseline for architecture validation. The validation effort demonstrated that
multiple vendors could independently design systems, which, when built according to the SCA
requirements, meet the program goals outlined above. Lessons learned during the validation have
been incorporated in SCA version 2.0.

The SCA documentation consists of the basic architecture specification, a supplement on military
security, a supplement on definition of application program interfaces, and a rational e document.

Software Structure. The software framework of the SCA defines the Operating Environment
(OE) and specifies the services and interfaces that applications use from that environment. The OE
is comprised of

- aCore Framework (CF),

- aCORBA middleware, and

- aPOSIX-based Operating System (OS) with associated board support packages.

vii

M SRC-5000SCA
rev. 2.1

The OE imposes design constraints on waveform and other applications to provide increased
portability of those applications from one SCA-compliant radio platform to another. These design
constraints include specified interfaces between the Core Framework and application software, and
restrictions on waveform usage of the Operating System.

The SCA aso provides a building-block structure (defined in the APl Supplement) for defining
application programming interfaces (APIs) between application software components. This
building-block structure for API definition facilitates component-level reuse and allows significant
flexibility for developers to define waveform-specific APIs.

Core Framework. The CF is an architectural concept defining the essential, “core” set of open
software Interfaces and Profiles that provide for the deployment, management, interconnection, and
intercommunication of software application components in embedded, distributed-computing
communication systems. All interfaces defined in section 3.1.3 of the SCA Specification are part
of the CF. Some of them are implemented by Core Application Services developers, some are
implemented by non-core Applications (i.e. waveforms, etc.); and some implemented by hardware
device providers. The CF builds an information base from the collection of profiles, known as the
Domain Profile and provided with the hardware and software of the system.

Hardware Structure. The hardware framework also uses OO concepts to define typical hardware
partitions within realizable systems. The primary purpose of the hardware structure is to require
complete and comprehensive publication of interfaces and attributes once systems have been built.
With these published specifications, additional venders can provide modules within a system and
software developers can identify hardware modules with capabilities required for a particular
waveform application. Hardware modularity also facilitates technology insertion as future
programmable elements increase in capability.

Military Applications. To maximize the commercial application of the SCA and the resulting

benefit, military-unique requirements are provided in SCA supplements. Currently there are two

suppl ements to the SCA Specification:
a Security Supplement identifies requirements to insure adequate protection of military
secure communications and to facilitate certification of JTRS products by the NSA, and

- an APl Supplement identifies structures associated with radio system services at various

interfaces such as physical, networking, security, and external interfaces. These APIs,
when fully defined, improve portability of applications within JTRS implementations, and
make reuse of functional components of those applications easier. For example,
standardizing APIs for a security module within a JTRS enables reuse of common modules
for multiple waveform applications. Standardizing networking APIs improves portability
of networking applications and offers easier internetworking functions such as routing,
bridging and providing gateways.

Support and Rationale Document (SRD). This document provides the rationale behind
architectural decisions aong with further supporting material.

Future Directions. The JTRS JPO intends to maintain the SCA Specification and Supplements
over the next year. The goa of the JPO is to transition maintenance of the SCA to a commercial

viii

M SRC-5000SCA
rev. 2.1

open-standards organization. Changes to the SCA will be incorporated based upon |essons-learned,
industry recommendations, and technology improvements. Changes to the Supplements will
similarly incorporate lessons-learned as well as definitions of additional services such as Quality of
Service monitoring and Fault Management.

Feedback. An open architecture framework is greatly improved through active feedback and
recommended changes from a wide audience of potential users. The JTRS JPO solicits and
encourages feedback to this document and provides aform available from
http://www.jtrs.saalt.army.mil/docs/documents/sca.html} Send the completed form to
trs.sca@saalt.army.milf Recommended additions to the SCA must be unencumbered by copyright
restrictions or intellectual property rights. Changesto the SCA are controlled by a JTRS JPO-
chaired Configuration Control Board (CCB).

http://www.jtrs.sarda.army.mil/docs/documents/sca.html
mailto:jtrs.sca@sarda.army.mil

M SRC-5000SCA
rev. 2.1

M SRC-5000SCA
rev. 2.1

1 INTRODUCTION

The Software Communications Architecture (SCA) specification establishes an implementation-
independent framework with baseline requirements for the development of Joint Tactical Radio
System (JTRS) software configurable radios. These requirements are comprised of interface
specifications, application program interfaces (APIs), behavioral specifications, and rules. The
goal of this specification is to ensure the portability and configurability of the software and
hardware and to ensure interoperability of products developed using the SCA.

Companion documents to this specification are Supplements to the SCA and the SCA Support and
Rationale Document (SRD). The Supplements provide specific service and application interface
requirements (for Security, networking, other services). The SRD provides the rationae for the
SCA and examplesto illustrate the implementation of the architecture for differing
domaing/platforms and selected waveforms.

1.1 SCOPE.

This document provides a complete definition of the SCA. It is an Architecture Framework in that
itisprecise in areas where reusability is effected and it is general in other areas so that unique
requirements of implementations determine the specific application of the architecture. The SCA
defines the hardware and software at different levels of detail to alow the broadest reusability and
portability of components.

For hardware, the physical and environmental differences across domains are so diverse that
physical commonality cannot be achieved for all implementations. However, by using an Object-
Oriented (OO) description for the hardware, represented as hardware classes, all potential system
implementations are included within asingle framework. That framework has attributes (i.e.,
behavior and interfaces) that are applicable across those different implementations.

The architecture for software makes extensive use of object modeling and its definition is primarily
in the Core Framework (CF), an integral part of a system's Operating Environment (OE).
Constraints on the software development, imposed by the architecture, are on the interfaces and the
structure of the software and not on the implementation of the functions that are performed. In this
way, innovative designs can be put forward with appropriate protection of the developer’s
intellectual property and still reap the benefits of wide reuse in other implementations of the
architecture. The SCA permits either hardware or software to be used in implementing a required
function. The approach taken also permits legacy solutions to be incorporated, where appropriate,
by encapsulation techniques to provide a*“one-sided” standard interface into architecture interfaces.

This architecture specifies rules that further constrain implementations to adhere to open system
standards. Specific implementation requirements may augment the rule-set to increase reusability
within and across domains.

Figure 1-1illustrates the concept of the SCA and itsimplementation down to specific platforms.
The hardware definition stays at aframework level with rules providing implementation guidance
down into domains and platforms. The software definition can be applied directly down to
implementation because of its general independence from hardware implementation. There are
special cases where size, weight, and power requirements limit the direct application of software

1-1

M SRC-5000SCA
rev. 2.1

objects. However, even in these cases, reusability of designs, captured in software and firmware
modeling and simulation tools, reduces the cost of implementation and the development time.

Software Communications |{ HW i |i SwW i
Architecture Framework F Gasesand U|g ECoreF(rcz:agework;
Sub-classes || i
: L Operating :
Environment
Soma SERCS
omams i Object Models :
i & IDL
] &)&Iflc ObJECtS \/: ---------------------- -:
I mplementation and Interface Specific Objects
Specifications

Figure 1-1. The Architecture Framework and its Relationship to I mplementation

1.2 COMPLIANCE.

The interfaces, behavior, and rules that define compliance with the SCA areidentified in, and are
an integral part of this specification. These elements are selected to maximize portability,
interoperability, and configurability of the software and hardware while alowing a procurer the
flexibility to address domain requirements and restrictions. If any requirements stated in this
specification are in conflict with existing standards/specifications, this specification takes
precedence.

1.2.1 Joint Technical Architecture Compliance.

The Joint Technical Architecture (JTA) mandates the minimum set of standards and guidelines for
al DoD Command, Control, Communications, Computers, and Intelligence (C*1) systems
acquisition. A foremost objective of the JTA isto improve and facilitate the ability of systemsto
support joint and combined operationsin an overall investment strategy. The SCA Operating
Environment fully complies with the JTA and provides a JTA-compliant framework for waveforms
and other applications.

1.3 DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS.

1.3.1 Conventions and Terminology.

1.3.1.1 Unified Modeling Language.

The Unified Modeling Language (UML), defined by the Object Management Group (OMG), is
used to graphically represent SCA interfaces, scenarios, use cases, and collaboration diagrams.

M SRC-5000SCA
rev. 2.1

1.3.1.2 Interface Definition Language.

Interface Definition Language (IDL), also defined by the OMG, is used to define the SCA
interfaces. IDL is programming language independent and can be compiled into programming
languages such as C++, Ada, and Java.

1.3.1.3 eXtensible Markup Language.

eXtensible Markup Language (XML) is used in aDomain Profile to identify the capabilities,
properties, inter-dependencies, and location of the hardware devices and software components that
make up an SCA-compliant system

1.3.1.4 Color Coding.

Color-coding is used to differentiate between architecture elements and applicationsin diagrams as
shown inFigure 1

Core Framework (CF) elements
Commercial-Off-The-Shelf (COTS) components
Host Applications

Red Side Network and Link Applications
Security Applications

Black Side Network and Link Applications
Modem Applications

RF

Figure 1-2. Color Coding Used in Document Figures

1.3.1.5 Requirements Language.

Interfaces, behavior, and rules that are imposed by this specification appear in sections 3 through 5
and are indicated by the word "shall". Editorial notes are contained within brackets and are
italicized ({example}).

1.3.1.6 CF Interface and Operation Identification.

CF interfaces and their operations are presented in italicized text. Core Framework Base Types
(3.1.3.5) are prefixed with “CF” when used in textual descriptions (e.g. "each item valueisa CF
Properties type").

1.3.2 Definitions.

Definitions are included in Appendix A.

1-3

M SRC-5000SCA
rev. 2.1

1.4 DOCUMENT CONTENT.

This document provides an overview of the SCA in section 2, followed by the Software, Hardware,
and Security architecture requirementsin sections 3 — 5. Section 6 addresses requirements not
contained in those functional categories. Evauation criteriafor product compliance to this
specification are addressed in section 7.

Appendicesinclude aglossary, acomplete listing of CF IDL, and details of architecture
requirements introduced in the main document.

15 APPLICABLE DOCUMENTS.

The following documents are applicable to the SCA either by direct reference or as foundation for
the architecture definition.

1.5.1 Government Documents.

Joint Technical Architecture, Version 2.0, 26 May 1998.

Operational Requirements Document (ORD) for Joint Tactical Radio (JTR), 23 March 1998.

1.5.2 Commercial Documents.
C Standard: Programming languages — C, ISO/IEC 9899:1990.
DCE UUID standard (OSF Distributed Computing Environment, DCE 1.1 Remote Procedure Call).

“Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley Professional
Computing) Gamma, Helm, Johnson, and Vlissides.

|[EEE 802.1 [Medium Access Control (MAC) addresses] IEEE Standards for Local and
Metropolitan Area Networks: LAN/MAN Bridging & Management.

|SO/IEC 10731 Conventions for the Definition of OSI Services, Annex D Alternative and
Additiona Time Seguence Diagrams for Two-party Communications.

minimumCORBA: OMG Document orbos/98-05-13, May 19, 1998.

POSIX 1003.13: Standardized Application Environment Profile - POSIX
Support (AEP), IEEE Std 1003.13-1998.

UML: OMG (Object Management Group) Unified Modeling Language Specification, Version 1.3,
March 2000.

XML: W3C (World Wide Web Consortium) Recommendation: Extensible Markup Language
(XML) 1.0, Feb 1998.

EIRealti me Application

“ POSIX isaregistered trademark of the Institute of Electrical and Electronics Engineers, Inc.

MSRC-5000SCA
rev. 2.1

2 OVERVIEW

This Section presents an overview of the SCA. Emphasisis on identifying the components of
the architecture and the manner in which these componentsinteract. Technical details and
requirements of the architecture are contained in Sections 3 - 5.

21 ARCHITECTURE DEFINITION METHODOLOGY.

The architecture has been developed using an object-oriented approach wherein the process can
be continued beyond the framework definition to product development. UML isused to
graphically represent interfaces while IDL is used to define them; both have been generated
using standard software development tools, alowing product development to continue directly
from the architecture definition.

2.2 ARCHITECTURE OVERVIEW.

2.2.1 Overview - Software Architecture.

The structure of the software architecture is shown in The key benefits of the
software architecture are that it:

1. Maximizesthe use of commercial protocols and products,

2. |solates both core and non-core applications from the underlying hardware through
multiple layers of open, commercial software infrastructure, and

3. Providesfor adistributed processing environment through the use of the Common Object
Request Broker Architecture (CORBA) to provide software application portability,
reusability, and scalability.

The software architecture defines an Operating Environment (OE) with the combined set of CF
services and infrastructure software (including board support packages, operating system and
services, and CORBA Middleware services) integrated in an SCA implementation. The software
partitions that illustrate applications are typical of how waveforms might be implemented using
the SCA.

2-1

MSRC-5000SCA
rev. 2.1

Applications
Core Framework (CF)
OE Commer((:i(i:al Off-the-Shelf

oTS)
Non-CORBA Non-CORBA Non-CORBA
Modem Security 1/0
Components Components Components | |
IIII # IIII IIII % IIII IP_‘ III
Link, Network |[Security|| Security ||Security} Link, Network 1/0 1/0
Components Adapter || Components|| Adapter Components IAdapter) | Components
[LLC/Network API jTSecurity API L 1 [LLC/Network API j 1/0 APIj
Core Framework | DL (“Logical Software Bus’ via CORBA)
. 1L —F | Ik —F
[2 1 S Z [2 | =z
CORBA ORB & CF CORBA ORB & CF
Services Services & Services Services &
(Middleware) Applications H (Middleware) Applications =
Operating System H | Operating System H
Network Stacks & Serial Interface Services H | Network Stacks& Serial Interface Services M |
Board Support Package (Bus L ayer) B Board Support Package (Bus L ayer) B

Black Hardware Bus I I Red Hardware Bus

Figure 2-1. Software Structure

2.2.1.1 BusLayer (Board Support Package).

The Software Architecture is capable of operating on commercial bus architectures. The OE
supports reliable transport mechanisms, which may include error checking and correction at the
bus support level. Possible busesinclude VME, PCI, CompactPCI, Firewire (IEEE-1394), and
Ethernet. The OE does not preclude the use of different bus architectures on the Red and Black
subsystems.

2.2.1.2 Network & Seria Interface Services.

The Software Architecture relies on commercial components to support multiple unique seria
and network interfaces. Possible serial and network physical interfaces include RS-232, RS-422,
RS-423, RS-485, Ethernet, and 802.x. To support these interfaces, various low-level network
protocols may be used. They include PPP, SLIP, LAPX, and others. Elements of waveform
networking functionality may also exist at the Operating System layer. An example of this
would be acommercia |P stack that performs routing between waveforms.

2.2.1.3 Operating System Layer.

The Software Architecture includes real -time embedded operating system functions to provide
multi-threaded support for applications (including CF applications). The architecture requires a
standard operating system interface for operating system services in order to facilitate portability
of applications.

MSRC-5000SCA
rev. 2.1

Portable Operating System Interface (POSIX) is an accepted industry standard. POSIX and its
real-time extensions are compatible with the requirements to support the OMG CORBA
specification. Complete POSIX compliance encompasses more features than are necessary to
control atypical implementation. Therefore, this specification defines aminima POSIX profile
to meet SCA requirements. The SCA POSIX profile is based upon the Real-time Controller
System Profile (PSE52) as defined in POSIX 1003.13.

2.2.1.4 Core Framework.

The CF isthe essential (“core”) set of open application-layer interfaces and services to provide
an abstraction of the underlying software and hardware layers for software application designers.
Section 3 presents the complete definition of all services and interfaces of the CF. The CF
consists of:

1. Base Application Interfaces (Port, LifeCycle, TestableObject, PropertySet,
PortSupplier, ResourceFactory, and Resource) that can be used by all software |
applications,

2. Framework Control Interfaces (Application, ApplicationFactory, DomainManager,
Device, LoadableDevice, ExecutableDevice, AggregateDevice and DeviceManager) |
that provide control of the system,

3. Framework Services Interfaces that support both core and non-core applications (File,
FileSystem, FileManager, and Timer), and ’

4. A Domain Profile that describes the properties of hardware devices (Device Profile)
and software components (Software Profile) in the system.

The Domain Profile supports the combination of resources to create applications. Device Profile
and Software Profile files utilize an XML vocabulary to describe specific characteristics of either
software or device components with regard to their interfaces, functional capabilities, logical
location, inter-dependencies, and other pertinent parameters.

2.2.1.5 CORBA Middleware.

CORBA is used in the CF as the message passing technique for the distributed processing
environment. CORBA is a cross-platform framework that can be used to standardize
client/server operations when using distributed processing. Distributed processingisa
fundamental aspect of the system architecture and CORBA isawidely used “Middleware”
service for providing distributed processing.

All CF interfaces are defined in IDL. The CORBA protocol provides message marshalling to
handle the bit packing and handshaking required for delivering the message. The SCA IDL
defines operations and attributes that serve as a contract between components.

2.2.1.6 Application Layer.

Applications perform user communication functions that include modem-level digital signal
processing, link-level protocol processing, network-level protocol processing, internetwork
routing, external input/output (1/0) access, security, and embedded utilities. Applications are
required to use the CF interfaces and services. Applications direct access to the Operating
System (OS) is limited to the services specified in the SCA POSIX Profile. Networking
functionality that may be implemented below the application layer, such as acommercial IP
network layer, is not limited to the SCA POSIX Profile sinceit existsin the OS kernel space.

2-3

MSRC-5000SCA
rev. 2.1

2.2.1.6.1 Applications.

Applications consist of one or more Resources. The Resource interface provides a common API
for the control and configuration of a software component. The application developers can
extend these definitions by creating specialized Resource interfaces for the application. At a
minimum, the extension inherits the Resource interface. Examples of Resource extensions are:
LinkResour ce, Networ kResour ce, and UtilityResour ce.

Devices are types of Resources used by applications as software proxies for actual hardware
devices. ModemDevice, I/ODevice, and SecurityDevice are examples that implement the Device
interfaces.

ModemDevice, LinkResource, SecurityDevice, 1/ODevice, and Networ kResour ce are Core
Framework interface extensions that implement APIs for waveform and networking applications.

The design of a Resource’ sinternal functionality is not dictated by the Software Architecture.
Thisisleft to the application developer. Core applications, which are a part of the CF, support
the non-core applications by providing the necessary function of control aswell as standard
interface definitions. The interfaces by which a Resource is controlled and communicates with
other Resources are defined in section 3.

2.2.1.6.2 Adapters.

Adapters are Resources or Devices used to support the use of non-CORBA capable elementsin
the domain. Adapters are used in an implementation to provide the trans ation between non-
CORBA -capable components or devices and CORBA-C?H)abIe Resources. The Adapter concept
is based on the industry-accepted Adapter design pattern™. Since an Adapter implements the CF
CORBA interfaces known to other CORBA -capable Resour ces, the trandation serviceis
transparent to the CORBA -capable Resources. Adapters become particularly useful to support
non-CORBA -capable Modem, Security, and Host processing elements. depicts an
example of message reception flow through the system with and without the use of Adapters.
Modem, Security, and Host Adapters implement the interfaces marked by the circled letters M,
S, and H respectively. Notice that the Waveform Link and Network Resources are unaffected by
theinclusion or exclusion of the Adapters. The interface to these Resources remains the samein
either case.

! “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) Gamma, Helm, Johnson, and Vlissides, pg. 139

2-4

MSRC-5000SCA

rev. 2.1
Non-CORBA | (%[Modem | [security | O [Non-corea | [security Host (%] Non-corea
(1) M odem Adapter Adapter [™ 7| securityDevice Adapter Adapter Host
oy “f © © N\, of®
o4 corea L= T wavdorm g CORBA ;% Waveform @C CORBA
ModemDevice @) LinkResour ce 3 SecurityDevice @ Networ kResour ce ®) HostResource

M essage Reception Path (with Adapters)

(1) RF Interface to Modem

(2) non-CORBA Modem Interface

(3) CORBA Interface to Waveform Link @
(4) CORBA Interface to Security Adapter @
(5) Black-side non-CORBA Security Interface
(6) Red-side non-CORBA Security Interface
(7) CORBA Interface to Waveform Network
(8) CORBA Interface to Host Adapter @

(9) non-CORBA Host I nterface

M essage Reception Path (without Adapters)

(1) RF Interface to Modem

(2) CORBA Interface to Waveform Link @
(3) CORBA Interfaceto Security @

(4) CORBA Interface to Waveform Networ k @
(5) CORBA Interfaceto Host (H)

Note: The design goal of a CORBA gateway “Adapter” isto
define the CORBA side of the gateway such that the eventual
replacement of the non-CORBA device and its Adapter does
not change the Core Framework CORBA interface.

Figure 2-2. Example Message Flowswith and without Adapters

2.2.1.7 Software Radio Functional Concepts.
2.2.1.7.1 Software Reference Model.

The software reference mode! depicted in[Figure 2-3]is based upon the Programmable Modular
Communication System (PMCS) Reference Model. This model forms abasis for the SCA by:

1. Introducing the various functional roles performed by software entities without
dictating a structural model of these elements, and
2. Introducing the control and traffic data interfaces between the functional software
entities.
|:| Digital Data I
< >
[[Antenna RE Black Proc. Security I nter networ
T Utility, Utility, » 10
Router, Router,
Air Network, Network,
Bridge, Bridge,
Link <==>
A A
A - | E
. . . = Security Monitor « : HCI
. : . * (part of INFOSEC)* .
Control - . . c (Data)
= = = @ m w "
ility,
. v v v 'S\/sIeT Control \/ Access
: .
- \ Utility,
\ HCI (Contral) Access

Figure 2-3. Software Reference Model

2-5

MSRC-5000SCA
rev. 2.1

The Reference Model identifies relevant functionality but does not dictate the architecture. The
SCA redlizes the Software Reference Model by defining a standard unit of functionality called a
Resource. All applications are comprised of Resources and using Devices. Specific resources
and devices can be identified corresponding to the functional entities of the Software Reference
Model:

ModemDevice: addresses Antenna, RF, and Modem entities,
LinkResource: addresses Black Processing entity,

SecurityDevice: addresses Security entity,

NetworkResource: addresses Internetworking entity,

|/ODevice: addresses external interfaces such as serial, ethernet, and audio
UtilityResource: addresses non-Waveform functionality.

System control entity functionality is addressed by the core framework applications: Application,
ApplicationFactory, DomainManager, Device, LoadableDevice, ExecutableDevice,
AggregateDevice, and DeviceManager. Control functionality may aso be localized in individua
resources.

shows examples of implementation classes for Resources. The operations and
attributes provided by LifeCycle, TestableObject, PortSupplier, and PropertySet establish a
common approach for interacting with any resource in a SCA environment. Port can be used for
pushing or pulling messages between Resources and Devices. A Resource may consist of zero or
more input and output message ports. The figure also shows examples of more specialized
resources and devices that result in specific functionality for each of six example types.
Clarification of the functionality associated with each of those is provided in the following
subsections. Examples of Devices in the following sections and figures can be examples of
Device, LoadableDevice, ExecutableDevice, AggregateDevice, and DeviceManager.

2-6

MSRC-5000SCA

rev. 2.1
| —— — —— — — — — — — — — — — — = - -
Base Application Interfaces 1 Modem Black security Internet HCI
1 : : i I Repeater Utility, Utility,
1 Port ‘ LifeCycle ‘ TestableObject PropertySet PortSupplier " RE Router Router Uility
1]] o Network Network '
1 Waveform A
1 . Bridge Bridge Access
I » Link Link
1 Device —~| Resource 1 Core Framework (CF)
1
1
1
1
! I
I e = —_— o\ — — — — — —
are example types of are example types of
ModemDevice 1/ODevice SecurityDevice NetworkResource LinkResource UtilityResource
MAC or Physical API Security API Network API LLC API
areexampletypesof areexampletypes of are example types of aree‘xamplet pesof areexampletypesof are example types of
M odem Repeater P 5 Security Router Bridge Gateway Host
Adapter Device dioDeVice Adapter Resour ce Resour ce Resource Adapter
Waveform Ethernet Serial Security Waveform Waveform = =
M odemDevice Device Device DomainDevice Networ kResour ce LinkResource | |MsgFilterResource | | SitAwar eResource

Figure 2-4. Conceptual Model of Resources

2.2.1.7.2 ModemDevice Functionality.

The ModemDevice provides a standard for the control and interface of a modem, which

encapsul ates diverse implementations of smart antenna, RF, and modem functions. The base
application interfaces are extended to modem devices through a Physical, Medium Access
Control (MAC), or Logical Link Control (LLC) API (seethe APl Supplement to the SCA),
which provides a standard interface for control and communication with modem operations from
ahigher (e.g., link layer to aMAC) resource. The functions, performed by the ModemDevices,
will vary depending on waveform requirements as well as hardware/software allocation and are
not dictated by the CF. Typical RF and modem functions are depicted in

1

Resource

MSRC-5000SCA

rev. 2.1
Modem Black security Internet HCI
Repeater Utility, Utility,

RE Router Router Utilit
Waveform Network Network Accegs’
Bridge Bridge
Link Link

)

Core Framework (CF)

are | example types | of
LinkResource| 1 1> ModemDevice
LLC API Physical or MAC API
are example types of
M odemAdapter Device WaveformM odemDevice Wavefor mRF_Adapter Device Repeater Adapter Device
TrandateM odem

! l i !
M odulate Demodulate& UpConvert & -
Interleave Deinterleave DownConvert Retransmit
FEC Encode FEC_Decode GainControl ControlModem
Spregd Desp?ead LevelControl
Filter Synchronize FreqqencyControl
Track Correlate E_quahze
AcquirePacket SchedulePacket Filter
TimeStamp TRANSEC BeamSteer
selfTest InterferenceNull

<lfTest

Figure 2-5. Example of Modem Resour ces

2.2.1.7.3 NetworkResource and LinkResour ce Functionality.

An example of networking resources is shown in The CF base application
interfacesare extended to link layer and network layer resources through APIs (see section
P.2.2.2), provided to enable information transfer and support of specific service characteristics
for networking applications. Examples are the Link-LLC API and Network-MAC API, which
provide standard interfaces for control and communication between network, link, and transport

layer resources.

The functions performed by the waveform networking and internetworking resources (examples
shown in note boxesin will vary depending on waveform requirements as well as
networking requirements and are not dictated by the CF. Resour ces that provide networking
behavior, including repeater, link, bridge, network, router, and gateway operations, are
representative and not defined in the SCA.

Device

Ly

—{ Resource

1

A

W N

MSRC-5000SCA

rev. 2.1
Modem Black security Internet HCI
Repeater Utility, Utility,

RE Router Router Utility,
Waveform Network Network o
Bridge Bridge
Link Link

Core Framework (CF)

example type of ar example types of\
ModemDevice 1.% 1 UtilityResource
Physical AP 1 17 A
LinkResource 1 1 | NetworkResource !
Repeater Device LLC API Network API GatewayResour ce

: ;

: - are example types of are exampletypes of TranslateM essage
Retransmit TranslateVoice
ControlModem TranslateVideo

WaveformLinkResour ce BridgeResource Router Resour ce WaveformNetwor kResource

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket

M easureL inkQuality
Analyzel inkQuality
ControlM odem
selfTest

Forwar dPacket
Forwar dQoS
PrioritizePacket
AddressPacket

2.2.1.7.4 1/ODevice Functionality.
Examples of I/ODevices are shown in An |/ODevice provides access to system
hardware devices and external physical interfaces. The operations performed by an 1/ODevice
will vary depending on the system hardware assets as well as the physical interfacesto be
supported and are not dictated by the CF. Typical I/O operations are depicted within the

exampl e subclasses.

2-9

TranslateAddress
Route

Multicast
Broadcast
Discover M obileNode
MaintainRoutingT able
Forwar dQoS

RouteM essage
MulticastM essage
BroadcastM essage
Discover Neighbor
MaintainRoutingT able
Forwar dQoS

M easur eNetwor kQuality
AnalyzeNetwor kQuality
selfTest

Figure 2-6. Example of Networking Resour ces

;* Resource +—— |

Device

of

MSRC-5000SCA

rev. 2.1
Modem Black security Internet HCI
Repeater Utility, Utility,

RE Router Router Utility,
Waveform Network Network o
Bridge Bridge
Link Link

Core Framework (CF)

% V\ UtilityResource
are example types of Y
1 example type of
NetworkResource| 1
Network API 1% 1.*
LinkResource 1/ODevice
1 1.*
LLC API
AN
are example types
|
SerialDevice EthernetDevice

ConfigurePort
TransmitM essage

ReceiveM essage
selfTest

AudioDevice

ConfigurePort
TransmitM essage
ReceiveM essage
selfTest

ConfigurePort
EncodeAudio
DecodeAudio
TransmitM essage
ReceiveM essage

Figure 2-7. Examplesof 1/0 Resources

2.2.1.7.5 SecurityDevice Functionality.

Examples of SecurityDevice and SecurityResource are shown in Typical security
operations are depicted within the example subclasses. SecurityDevice subclasses extend
security functions to hardware devices within the system while SecurityResour ce subclasses
extend security functions to software components. There can be awide variation of security
solutions both in hardware and software. Transmission security (TRANSEC) and
communications security (COM SEC) requirements also vary between waveforms. The location
of the security boundary with respect to networking requirements also varies between
waveforms. The CF base application interfaces are extended to SecurityResour ces through
Security APIs, which provide standard interfaces for control and communication between

security devices and resources and application waveforms.

2-10

MSRC-5000SCA

Device

1

—

Resource

N

N

Core Framework (CF)

are example types of are example types of
|/ODevice 1.x 1.* 4 NetworkResource
Network API
1.* 1.% |
ModemDevice i i ili
‘ 1= 1+ SecurityDevice L 1 UtilityResource
MAC or Physical API Security AP i
1”* !
/V % b\ LinkResource
are example types of 1.*
_ P P LLC API
INFOSECAdapter Device Embedded| NFOSECDevice Exter nal INFOSECDevice -
SecurityResour ce
Trandatel NFOSEC -
_ : _ Security API
— . -
ISy il A R

Figure 2-8.

Encrypt
Decrypt
GenerateTRANSECStream
Bypass

Zeroize

Authenticate

Load Key
Synchronize/Resynchronize

2-11

rev. 2.1
Modem Black security Internet HCI
Repeater Utility, Utility,

RE Router Router Utility,
Waveform Network Network Acce§
Bridge Bridge
Link Link

are exampletypes 0{

TRANSEC_Resource

Guard_Resource

Generate TRANSEC
ream

L

Examples of Security Devices and Resour ces

Control Data Path
Control Access
Monitor Security

MSRC-5000SCA
rev. 2.1

2.2.1.7.6 UtilityResource Functionality.

An example of UtilityResourceis shown in The operations performed by the utility
resources will vary depending on the embedded applications to be supported as well as host
interface protocol requirements and are not dictated by the CF. Typical utility operations are
depicted within the example subclasses. Ultimately, the UtilityResour ce encompasses any non-
waveform application that could execute in an SCA-compliant system.

2.2.1.8 System Control.

The SCA provides a specification for interfaces, services, and data formats for the control of
resources. Each resource establishes its controllable parameters with the DomainManager viaa
Domain Profile. Applications constrain each resource's parameter values to their own needs.
Applications controllable parameters are also in the Domain Profile.

Use of CORBA and the base application interfaces provides the means to have domain and
application control though a common interface. SerialDevice and EthernetDevice (in
are examples of the external interfaces available to auser. These examples show that system
control operations operate with human or machine interfaces either locally or remotely and
interact in amanner that facilitates portability.

Non-CORBA user terminals are interfaced through the use of Adapters.

2-12

MSRC-5000SCA

rev. 2.1
Modem Black security Internet HCI
Repeater Utility, Utility,
RE Router Router Utility,
Waveform Network Network P
Bridge Bridge
Link Link
1 R
| Resource | Device Core Framework (CF)
0..* |
are example types of
NetworkResource 1 1/ODevice
1.*
Network API 1 /
LinkResource = I UtilityResource
LLC API h
are example types of
|
GatewayResour ce M sgFilter Resour ce SitAwar eResour ce HostAdapter Resour ce
: : | TranslateHost
: . :
TranslateM essage TypeFilter CollectPositionReports
TrandateVoice Geogr aphicFilter ConsolidatePositionReports
TrandateVideo PriorityFilter DisseminatePostionReports
selfTest selfTest

Figure 2-9. Example of Utility Resour ces

2.2.2 Networking Overview.

SCA-compliant Radio Systems communicate with peer systems through protocols as shown in
The external networking protocols between an SCA-compliant System and its peers
are part of waveform applications and are not specified by this architecture specification.
However, the interface definitions for the services required to implement the protocols within an

SCA-compliant System are specified (in the APl Supplement).

2-13

Peer
SCA Radio Externa
e System Networking
Peer Protocols
Radio

System

~N

Networ kResource

LLC

API
Service

Definition

Networking

Transfer

Protocol
Entities

d

LinkResource

\ 4

Mechanism

N

MAC or

ModemDevice

e

Phyiscal API Typically
Service CORBA IDL,
Definition GIOP, & 11OP

MSRC-5000SCA
rev. 2.1

will be implemented by a different set of
one or more protocol entities.

Figure 2-10. External Network Protocols and SCA Support

2.2.2.1 Externa Networking Protocols.

Typically each external networking protocol

External networking protocols define the communications between an SCA-compliant Radio
System and its peer systems. These external networking protocols can run over wireless or

wireline physical media. Example protocols include Single Channel Ground/Airborne Radio
System (SINCGARS), Ethernet, HF Automatic Link Establishment (ALE), IEEE 802.11, IS

95A, IP, and future networking protocols.

2-14

MSRC-5000SCA
rev. 2.1

Through the external networking protocols, implemented by applicationsin an SCA-compliant
radio system and its peer systems, a network of nodes is formed interconnected by repeaters,
bridges, routers, and/or gateways. Asshown in figure 2-11} external networking protocols will
typically interconnect at different layers using:

1
2.
3.
4.

Physical layer interconnections with arepeater function,

Link layer interconnections with a bridge function,

Network layer interconnections with standard network routing, and/or
Upper layer interconnections with application gateways.

The different categories of interoperability are outlined below based upon the OSI Model. There
may be multiple levels of interoperability within the same system on a waveform by waveform

basis.

A. Physical Layer Interoperability. The external networking protocols provide a

compatible physical interface, including the signaling interface, but no higher layer
processing. Thislevel of interoperability is adequate for asimple bit by bit bridging
or relay operation between two interfaces.

Link Layer Interoperability. The external networking protocols provide link layer
processing over all physical interfaces. Thislevel of interoperability is adequate for
allowing the radio to be used as transport and for allowing the radio to use another
network as transport. Intelligent routing or switching decisions are limited to local
layer 2 routing.

Network Layer Interoperability. The externa networking protocols provide network
layer address processing interoperability. The radio and the networks being inter-
operated are sub-networks of the same Inter-network. At thislevel, intelligent
switching and routing decisions can be made end-to-end.

Host Level Interoperability (Layers4 — 7). Embedded applications can exchange
information with hosts attached to the network. An example of thisis ahandheld
radio that contains an embedded Situation Awareness (SA) application exchanging
SA updates with a vehicular platform in an external sub-network. In this example,
the radio provides message payload trandlations to allow two otherwise incompatible
hosts to communicate.

2-15

MSRC-5000SCA
rev. 2.1

OSlI Layers Wireless to Wireless Wireless to Wireline
Symbology
7 - Application S ateway Sateway - Traffic Flow is up one side
6 - Presentation L oN\Qesources L N\Qesourees of protocol stack and down
5 - Session Utility Utility Utility Utility the other side
Resource Resource Resource Resource « Traffic flow up or down the
4 - Transport protocol stack is shown via
&@ while traffic flow
Network API Network API from one side of the
protocol stack to the other
a8 Inter-network Inter-network is shown by (2) & (4)
3 Inter- Resource Resource * The Lower Layer API
. network interface is used for flows
N @ &@ while the Upper
e Layer APl is used for
t flow 3.
W LLC API LLC API « Resources shown asd
3A Waveform Waveform can flow data vertically,
© Intra-network Intra-network Resources shown s
r Sub- ntra-netw Wi can flow data horizontally,
K network Resource Resource and Resources shown as
[can flow data
vertically and/or
LLC API LLC API horizontally.
2 - Link Wavefor Waveform] Waveform Wireline
Link Link Link Link Upper Layer API
Resource Resource Resource Resource T Inter-Networking W
] Physical Resource
Physical API API ¢
Repeater |
Resource Waveform @ Lower Layer API @
1 - Physical Waveform Waveform Modem Wireline | Intra-networkin
Modem Modem Device Resource
Device Device Lower Lower
Layer Layer
RE RE RF Resource Resource

Figure2-11. SCA-Supported Networking Mapped to OSlI Network Model

2.2.2.2 SCA Support for External Networking Protocols.

shows that within an SCA-compliant Radio System, application protocol entities are
used to implement the external networking protocols. These protocol entities are networking
applications™. Entity types that support external networking protocols include ModemDevice,

2 External networking protocol entities can reside within an application or within the kernel
space of operating systems. These external networking protocol applications are not necessarily
the same as OSl layer 7 applications. (When an application uses protocol entities within the OS
kernel space, and that kernel space is also used for internal system CORBA transport protocol,

2-16

MSRC-5000SCA
rev. 2.1

LinkResour ce, Networ kResour ce, SecurityDevice, I/ODevice, and UtilityResource. Typically,
each waveform or wireline protocol will be implemented by a unique set of one or more protocol
entities. A unique set of protocol entities implements the protocol stack specified by awaveform
or wireline protocol. A radio system implementing multiple waveform applications may have
multiple protocol entities at each protocol layer.

In order to support application portability, standard interfaces are required between application
protocol entities. These Networking APIs, support the concept of a service interface between a
service provider (usually the lower OSI protocol layer) and a service user (usually the higher OS
protocol layer).

Networking APIs, like other waveform application APIs, are extensions to the CF base

application interfaces that are inherited from the CF Resource class. APIs can be extended |
allowing vendors to provide value-added features that distinguish themselves from their
competitors.

Two Networking API types areillustrated in this section: an LLC API associated with the
LinkResource and a Network API associated with the NetworkResource. The APIs can be
mapped into the OSI Networking Protocol model as shown in figure 2-11. This figure shows
two very similar protocol stacks for wireless-to-wireless networking and wireless-to-wireline
networking. The difference isthat the wireline stack has a WirelineDevice at the physical |ayer
instead of aModemDevice. (Note that the OSI network layer maybe split into multiple network
resources as shown in figure 2-11. In most cases, the layer 3A sub-network hasan LLC API to
the upper layer 3B inter-network (for example when layer 3B isIP). However, for some network
waveform protocols, the layer 3A interface may be the network API).

The SCA defines an API Instance to provide the mechanism for distributing the protocol layers
within an SCA-compliant Radio System. An API Instanceis acoupling of a Networking API
Service Definition and a Transfer Mechanism for a particular waveform implementation. The
Service Definition for awaveform details the primitives (operations), the parameters (variabl es),
their representation (structures, types, formats), and its behavior. The transfer mechanism
provides the communication between the waveform protocol layer service provider and a service
user. CORBA isthe preferred transfer mechanism. Because security requirements for a
particular implementation may be met using services associated with CORBA, later introduction
of adifferent transfer mechanism requires careful analysis of the security services that can be
provided by that transfer mechanism. Figure 2-10 shows the relationship between protocol
entities, Service Definitions, and Transfer Mechanisms.

2.2.3 Overview - Hardware Architecture.

Partitioning the hardware into classes places emphasis on the physical elements of the system
and how they are composed of functional elements. These classes define common el ements
sharing physical attributes (characteristics and interfaces) that carry over to implementation for
specific domain platforms. The same framework appliesto all domains. Appropriate application
of the requirements leads to common hardware modules for different platforms. A summary
view of the hardware framework is shown in figure 2-12.

additional security protection may be required to prevent external network nodes from directly
connecting with internal CORBA objects.)

2-17

SCA-Compliant Hardware

K

Chassis

/

HW Moduleg(s)

b

[

MSRC-5000SCA
rev. 2.1

Modem

Processor

INFOSEC

/0

Reference Standard

Figure 2-12. Hardware Architecture Framework

The HWModul &(s) class inherits the system level attributes from the SCA-CompliantHardware
class. Classes below the HWModule(s) classinherit the attributes of that class. The attributes
are the parameters that define domain-neutral hardware devices, and the values assigned to the
attributes satisfy requirements for a selected implementation. The hardware devices, which are
the physical implementation of these classes, will have values for the relevant attributes based on
aplatform’s physical requirements and the procurement performance requirements. Some
attributes are used in the creation of waveform applications and provided in a Device Profile,

readable by CF applications.

The Chassis Class has unique physical, interface, platform power, and external environment
attributes that are not shared with the modules in the chassis. Software Architecture Definition

2-18

MSRC-5000SCA
rev. 2.1

3 OPERATING ENVIRONMENT.

This section contains the requirements of the operating system, middleware, and the CF
interfaces and operations that comprise the OE.

3.1.1 Operating System.

The processing environment and the functions performed in the architecture impose differing
constraints on the architecture. An SCA application environment profile (AEP) was defined to
support portability of waveforms, scalability of the architecture, and commercial viability.
POSIX specifications are used as a basis for this profile. The notional relationship of the OE and
applications to the SCA AEP isdepicted in figure 3-1. The OS shall provide the functions and
options designated as mandatory by the AEP defined in Appendix B. The OSis not limited to
providing the functions and options designated as mandatory by the profile. The CORBA Object
Request Broker (ORB), the CF Framework Control Interfaces, Framework Services Interfaces,
and hardware device drivers are not limited to using the services designated as mandatory by the
profile.

applications use CF for Logical Deviceis an Adapter for

CORBA API the HW-specific devices 7

al File access

applications Resources,
CF Base Application
o S

Interfaces &
Core Framework: /
Framework Control &

Framework Services I nterfaces P

CORBA ORB non-CORBA components
or
devicedrivers

OS access

irrited OS access OS access (non-CORBA
Imited to unlimited unlimited components provide
SCA AEP access to hardware
S O devices/ functionality
OS (function) that supports SCA not availableon a
CORBA-capable

(unlimited proprietary APIsfor system p processor)
development).

Any vendor-provided OW

function calls

Figure 3-1. Notional Relationship of OE and Application to the SCA AEP

MSRC-5000SCA
rev. 2.1

The OS and related file systems shall support a minimum file name length of 40 characters and a
minimum combined pathname/filename length of 1024 characters.

Applications are limited to using the OS services that are designated as mandatory for the profile.
Applications will perform file access through the CF. (Application requirements are covered in
section 3.2.)

3.1.2 Middleware & Services.

3.1.2.1 CORBA.

The OE shall use middleware that, at a minimum, provides the services and capabilities of
minimumCORBA as specified by the OMG Document orbos/98-05-13, May 19, 1998.
3.1.2.2 CORBA Extensions.

The following extensions and/or services above and beyond minimumCORBA are allowed.

3.1.2.2.1 Naming Service.

CORBA Naming Service may be used. If a CORBA Naming Service is used, the OE should
provide an Interoperable Naming Service as specified by the OMG Document orbos/98-10-11,
October 19, 1998.

As an alternative, software components will include stringified Interoperable Object References
(IORs) in their Software Profile. If stringified IORs are used, the object reference shall be
generated using the persistent LifeSpan policy per the minimumCORBA specification.

3.1.2.3 Log Service.
3.1.2.3.1 Useof Log Service.

This section describes the requirements for components that produce log records. A log
producer is a CF component (e.g., DomainManger, Application, ApplicationFactory,
DeviceManager, Device) or an application’s CORBA capable component (e.g., Resource,
ResourceFactory) that produces log records. (A component that calls the writeRecords operation
of the Log interface.)

A standard record typeis defined for all log producers to use when writing log records. Thelog
producer may be configured viathe PropertySet interface to output only specific log levels.

Log producers shall implement a configure property with an ID of
“PRODUCER_LOG_LEVEL"”. The PRODUCER_LOG_LEVEL configure property provides
the ability to “filter” the log message output of alog producer. The type of this property shall be
alLogLevel Sequence. The configure property LogLevel Sequence contains al log levels that
shall be enabled. Only the messages that contain an enabled log level may be sent by alog
producer to aLog. Log levelswhich are not in the LogL evel Sequence shall be disabled.

Log producers shall implement a property with an ID of “PRODUCER_LOG _ID”. The
PRODUCER_LOG_ID configure property provides an instance unique identifier for the log
producer. Thelog producer shall use the string value of the PRODUCER_LOG _ID property in
the ProducerID field of the ProducerLogRecord.

Log producers shall operate normally in the case where the connectionsto aLog are nil or an
invalid reference.

3-2

MSRC-5000SCA
rev. 2.1

Log producers shall output only those log records that correspond to enabled LogLevel Type
values.

3.1.2.3.2 LogServiceModule.

The LogService module contains the Log servant interface and the types necessary for alog
producer to generate standard SCA log records. This module also defines the types necessary to
control the logging output of alog producer. Components that produce logs are required to
implement configure properties that allow the component to be configured as to what log records
it will output.

Implementation of the LogServiceisoptional (i.e. alog serviceisnot arequired component of a
JTRS installation). CF components that are required to write log records are also required to
account for the absence of alog service and otherwise operate normally.

3.1.23.21 Types
3.1.23.21.1 LogLeveType.
Type LogLevel Type is an enumeration that is utilized to identify log levels.

enum LogLevel Type {SECURI TY_ALARM
FAlI LURE_ALARM
DEGRADED ALARM
EXCEPTI ON_ERRCR
FLOW CONTROL_ERROR
RANGE_ERROR
USAGE_ERROR

ADM NI STRATI VE_EVENT
STATI STI C_REPORT
PROGRAMVER _DEBUGL
PROGRAMVER DEBUG2
PROGRAMVER DEBUG3
PROGRAMVER DEBU4
PROGRAMVER DEBUGH
PROGRAMVER DEBUGS
PROGRAMVER _DEBUG?
PROGRAMVER DEBUGS
PROGRAMVER DEBU®
PROGRAMVER _DEBUGL0
PROGRAMVER _DEBUGL 1
PROGRAMVER _DEBUGL2
PROGRAMVER DEBUGL3
PROGRAMVER DEBUGL4
PROGRAMVER DEBUGL5
PROGRAMVER _DEBUGL 6

3.1.2.3.2.1.2 ProducerLogRecordType.
Log producers format log records as defined in the structure ProducerL ogRecordType.

struct ProducerLogRecordType {
unsi gned | ong producer| D
string producer Naneg;
LogLevel Type | evel;

MSRC-5000SCA
rev. 2.1

String | ogDat a;
}

producerID : Thisfield uniquely identifies the source of alog record. The valueis unique within
the Domain. The DomainManager and ApplicationFactory are responsible for assigning this
value.

producerName : Thisfield identifies the producer of alog record in textual format. Thisfieldis
assigned by the log producer, thusis not unique within the Domain (e.g. multiple instances of an
application will assign the same name to the ProducerName field.)

level : Thisfield identifies the type of message being logged as defined by the type
LogLevel Type.

logData : This field contains the informational message being logged.

3.1.2.3.2.1.3 LogLevel Sequence.

The LogL evel Sequence type is an unbounded sequence of LogLevel Types. The
PRODUCER_LOG_LEVEL configure/query property is of the LogL evel Sequencet ype.

typedef sequence <LoglLevel Type> LoglLevel Sequence;

3.1.2.33 Log.
3.1.2.3.3.1 Description.

A Logisutilized by CF and CORBA capabl e application components to store informational
messages. These informational messages are referred to as ‘log records’ in this document. The
interface provides operations for writing log records to a Log, retrieving log records from aLog,
control of aLog, and status of aLog.

3-4

MSRC-5000SCA
rev. 2.1

3.1.23.3.2 UML.

<<Interface>>
Log

FWyetMaxSize() : unsigned long long

WsetMaxSize(size : in unsigned long long) : void

MyetCurrentSize() : unsigned long long

MyetNumRecords() : unsigned long long

FyetLogFullAction() : LogFullActionType

#setLogFullAction(action : in LogFullActionType) : woid
FWyetAvailabilityStatus() : AvailabilityStatusType
WyetAdministrativeState() : AdministrativeStateType

s etAdministrativeState(state : in AdministrativeStateType) : void
#WyetOperationalState() : OperationalStateType
MvriteRecords(records : in ProducerLogRecordSequence) : wid
#yetRecordidFromTime(fromTime : in LogTimeType) : RecordldType
% etrieveByld(currentld : inout RecordldType, howMany : in unsigned long) : LogRecordSequence
WclearLog() : wid

Fdestroy() : woid

uses
V
<<CORBAStruct>>
ProducerLogRecordType

wproducerlD : unsigned long
wiproducerName : string
wlevel : LogLewvelType
wdogData : string

Figure3-2. LogUML.

3.1.2.3.3.3 Types.
3.1.2.3.3.3.1 InvalidParamException.
The InvalidParamException exception indicates that a provided parameter wasinvalid.

exception InvalidParam {string detail s};

3.1.2.3.3.3.2 LogEmptyException.
The LogEmptyException exception indicates that the log is empty.
exception LogEnpty ();

3.1.2.3.3.3.3 LogTimeType.

This type provides the time format used when writing log records. The Log implementation is
required to produce time-stamps compatible with the POSI X -defined struct tm.

3-5

MSRC-5000SCA
rev. 2.1

t ypedef unsigned | ong | ong LogTi neType;

3.1.2.3.3.3.4 Operational StateType.

The enumeration Operational StateType defines the Log states of operation. WhentheLogis
ENABLED it isfully functiona and is available for use by log producer and log consumer
clients. A Log that is DISABLED has encountered a runtime problem and is not available for
use by log producers or log consumers. The internal error conditions that cause the Log to set
the operational stateto ENABLED or DISABLED are implementation specific.

enum Qper ati onal St at eType { Dl SABLED, ENABLED};

3.1.2.3.3.35 AdministrativeStateType.

The AdministrativeStateType denotes the active logging state of an operational Log. When set
to UNLOCKED the Log will accept records for storage, per its operational parameters. When
set to LOCKED the Log will not accept new log records and records can be read or deleted only.

enum Adni ni strativeStateType {LOCKED, UNLOCKED};

3.12.3.3.3.6 AvailabilityStatusType.

AvailabilityStatusType denotes whether or not the Log is available for use. When true, offDuty
indicates the Log is LOCKED (administrative state) or DISABLED (operational state). When
true, logFull indicates the Log storage isfull.

struct AvailabilityStatusType{
bool ean of f Duty;
bool ean | ogFul I ;

3.1.2.3.3.3.7 LogFullActionType.

This type specifies the action that the Log should take when itsinterna buffers become full of
data, leaving no room for new records to be written. Wrap indicates that the Log will overwrite
the oldest 1og records with the newest records, as they are written to the Log. Halt indicates that
the Log will stop logging when full.

enum LogFul | Acti onType (WRAP, HALT);

3.1.2.3.3.3.8 RecordIDType.
Thistype provides the record ID that is assigned to alog record.
t ypedef unsigned | ong | ong Recordl DType;

3.1.2.3.3.3.9 LogRecordType.

The LogRecordType defines the format of the log records as stored in the Log. The ‘info’ field is
the ProducerL ogRecord that is written by a client to the Log.
struct LogRecordType {

Recor dl DType i d;
LogTi neType ti ne;

MSRC-5000SCA
rev. 2.1

Producer LogRecor dType i nf o;
b

3.1.2.3.3.3.10 LogRecordSequence.
The LogRecordSequence type defines an unbounded sequence of log records.

t ypedef sequence<LogRecordType> LogRecordSequence;

3.1.2.3.3.3.11 ProducerL ogRecordSequence Type.
The ProducerL ogRecordSequence type defines a sequence of ProducerL ogRecordTypes.

t ypedef sequence <ProducerLogRecordType> Producer LogRecor dSequence

3.1.2.3.3.4 Attributes.
N/A.

3.1.2.3.3.5 Operations.

3.1.23351 getMaxSze.

3.123351.1 Brief Rationale.

This operation sets the maximum number of bytes that the Log can store.

3.1.23351.2 Synopsis.
unsi gned | ong | ong get MaxSi ze();

3.1.2.335.1.3 Behavior.
The getMaxS ze operation returns the maximum size of the Log measured in number of bytes.

3.1.23.35.14 Returns.

The getMaxS ze operation shall return the integer number of bytes that the Log is capable of
storing.

3.1.2.335.15 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.23.352 setMaxSze.
3.1.233521 Brief Rationale.
This operation sets the maximum number of bytes that the Log can store.

3.1.233522 Synopsis.
voi d set MaxSi ze(unsi gned | ong | ong size) raises (lnvalidParam;

3.1.2.335.23 Behavior.
The setMaxS ze operation shall set the maximum size of the log measured in number of bytes.

31233524 Returns.
This operation does not return avalue.

MSRC-5000SCA
rev. 2.1

3.1.2.33525 ExceptiongErrors.

The setMaxS ze operation shall raise the InvalidParam exception if the size parameter passed in
isless than the current size of the Log.

The setMaxS ze operation shall raise the InvalidParam exception if the input size parameter is
greater than the storage space available to the Log.

3.1.2.3.35.3 getCurrentSze.
31233531 Brief Rationae.
The getCurrentSze operation provides the current size of the log storage in bytes.

31233532 Synopsis.
unsi gned long long getCurrentSize ();

31233533 Behavior.
The getCurrentSze operation returns the current size of the log storage in bytes.

3.1.2.3.35.34 Returns.

The getCurrentSze operation shall return the current size of the log storage in bytes. (i.e. if the
log contains no records, getCurrentSize will return avaue of 0 (zero).)

3.1.2.33535 ExceptionsErrors.
This operation does not return any exceptions.

3.1.2.3.35.4 getNumRecords.
31233541 Brief Rationae.
The getNumRecor ds operation provides the number of records present in the Log.

3.1.23354.2 Synopsis.
unsi gned | ong | ong get NunRecords ();

3.1.2.3.354.3 Behavior.
The getNumRecor ds operation returns the current number of records contained in the Log.

3.1.23.354.4 Returns.

The getNumRecords operation shall return the current number of 1og records containedin the
Log.

3.1.2.33545 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.2.3.3.5.5 getLogFullAction.
3.1.23355.1 Brief Rationale.
The getLogFull Action operation provides the action taken when the Log becomes full.

3.1.2.3355.2 Synopsis.
LogFul | Acti onType get LogFul | Action();

MSRC-5000SCA
rev. 2.1

3.1.2.3.3553 Behavior.

The getLogFull Action operation returns the action that will be taken when the maximum size of
the Log has been reached.

31233554 Returns.
The getLogFull Action operation shall return the Log’slog full action setting.

3.1.2.3.3555 ExceptiongErrors.

This operation does not return any exceptions.
3.1.2.3.35.6 setLogFullAction.
3.1.2.3356.1 Brief Rationale.

The setLogFull Action operation is used to configure the Log to either WRAP or HALT when the
Log becomes full.

3.1.23356.2 Synopsis.
voi d set LogFul | Action(in LogFull ActionType acti on)

3.1.2.3.35.6.3 Behavior.

The setLogFull Action operation shall set the action taken when the maximum size of the Log has
been reached.

3.1.2.3.3564 Returns.
This operation does not return avalue.

3.1.2.3356.5 ExceptiongErrors.

This operation does not return any exceptions.

3.1.2.3.35.7 getAvailabilitySatus.

3.1.2.3357.1 Brief Rationale.

The getAvailabilityStatus operation is used to read the avail ability status of the Log.

3.1.2.335.7.2 Synopsis.
Avail abilityStatusType getAvailabilityStatus ();

3.1.23.35.7.3 Behavior.

The getAvailabilityStatus operation returns a structure that reflects the avail ability status of the
Log. Seethe description of the AvailabilityStatusTypein 3.1.2.3.3.3.6.

31233574 Returns.

The getAvailabilityStatus operation shall return the current availability status of the Log.
3.1.2.3.3575 ExceptiongErrors.

This operation does not raise any exceptions.

3.1.2.3.3.5.8 getAdministrativeSate.
31233581 Brief Rationae.
The getAdministrativeState is used to read the administrative state of the Log.

MSRC-5000SCA
rev. 2.1

3.1.2.3358.2 Synopsis.
Admi ni strativeStateType get Admi nistrativeState();

3.1.2.3.358.3 Behavior.

The getAdministrativeState operation returns the administrative state of the Log. Seethe
description of the AdministrativeStateTypein 3.1.2.3.3.3.5.

31233584 Returns.
The getAdministrativeState operation shall return the current administrative state of the Log.

3.1.2.33585 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.2.3.359 setAdministrativeSate.
3.1.2.3359.1 Brief Rationale.
The setAdministrativeState operation provides write access to the administrative state value.

3.1.23359.2 Synopsis.

void set AdministrativeState(in AdministrativeStateType state);

3.1.23.359.3 Behavior.
The setAdministrativeState operation shall set the administrative state of the Log.

3.1.2.3.3594 Returns.
This operation does not return avalue.

3.1.2.3359.5 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.2.3.3.5.10 getOperational Sate.
3.1.2.3.35.10.1 Brief Rationale.
The getOperational Sate operation returns the operational state of the Log.

3.1.2.3.35.10.2 Synopsis.
Oper ational St at eType get Operational State();

3.1.2.3.35.10.3 Behavior.

The getOperational Sate operation returns the operational state of the Log. See the description
of Operational StateTypein 3.1.2.3.3.3.4.

3.1.2.3.35104 Returns.
The getOperational Sate operation shall return the current operationa state of the Log.

3.1.2.3.35.10.5 ExceptiongErrors.
This operation does not raise any exceptions.

3-10

MSRC-5000SCA
rev. 2.1

3.1.2.3.3.5.11 writeRecords.

3.1.2.335.11.1 Brief Rationale.

The writeRecords operation provides the method for writing log records to the Log. The
operation is defined as oneway to minimize client overhead while writing to the Log.

3.1.2.335.11.2 Synopsis.

oneway void writeRecords(in ProducerlLogRecordSequence records);

3.1.2.3.35.11.3 Behavior.

The writeRecords operation shall add each log record supplied in the records parameter to the
Log. When thereisinsufficient storage to add one of the supplied log recordsto the Log, and
theLogFullAction is set to HALT, the writeRecords method shall set the availability status
logFull state to true (e.g. if 3 records are provided in the records parameter, and while trying to
write the second record to the log, the record will not fit, then the log is considered to be full
therefore the second and third records will not be stored in the log but the first record would have
been successfully stored.).

The writeRecords operation shall write the current time to the time field of the LogRecord in the
format defined by the standard POSIX type struct tm.

The writeRecords operation shall assign a unique record ID to the id field of the LogRecord.

Log records accepted for storage by the writeRecords shall be available for retrieval in the order
received.

312335114 Returns.

This operation does not return avalue.

3.1.2.3.35.11.5 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.2.3.3.5.12 getRecordldFromTime.

3.1.2.3.35.12.1 Brief Rationale.

The getRecordldFromTime operation is used to get the record ID of the first record in the Log
with atime-stamp that is greater than or equal to the time specified in the parameter.

3.1.2.3.35.12.2 Synopsis.

Recor dl DType get Recordl dFronili ne (in LogTi neType fronti ne);
rai ses (LogEnpty)

3.1.2.3.35.12.3 Behavior.

The getRecordldFromTime operation returns the record ID of thefirst record in the log with a
time-stamp that is greater than, or equal to, the time specified in the fromTime parameter. If the
Log is empty, the LogEmpty exception is raised, and the returned record ID isinvalid.

3.1.2.3.35.124 Returns.

The getRecordldFromTime operation shall return the record ID of the first record in the log with
atime-stamp that is greater than, or equal to, the time specified in the fromTime parameter. The
getRecordldFromTime operation shall return zero if no record exists in the log with atime-
stampthat is greater than or equal to the time specified in the fromTime parameter.

3-11

MSRC-5000SCA
rev. 2.1

3.1.2.3.35.125 ExceptionsgErrors.

When the Log is empty, the getRecordldFromTime operation shall raise the LogEmpty
exception.

3.1.2.3.3.5.13 retrieveByld.

3.1.2.3.35.13.1 Brief Rationale.

TheretrieveByld operation is used to get a specified number of records from a Log.

3.1.2.3.35.13.2 Synopsis.

LogRecor dSequence retrieveByld (inout Recordl DType currentld, in unsigned
| ong howivany) ;

3.1.2.3.35.13.3 Behavior.

TheretrieveByld operation returns alist of log records that begins with the record specified
bythe currentlD parameter and contains less than or equal to the number of records specified in
the howMany parameter.

TheretrieveByld operation shall set the inout parameter currentld to the LogRecord Id of next
record after the last record in the log record sequence returned.
3.1.23.35134 Returns.

The retrieveByld operation shall return alog record sequence that begins with the record
specified by the currentld parameter. The number of recordsin the log record sequence returned
by the retrieveByld operation shall be equal to the number of records specified by the howMany
parameter, or the number of records available if the number of records specified by the
howMany parameter cannot be met. If the record specified by currentld does not exist, the
retrieveByld operation shall return an empty list of log records. If the Log isempty, the
retrieveByld operation shall return an empty list of log records.

3.1.2.3.35.13.5 ExceptiongErrors.

This operation does not raise any exceptions.

3.1.2.3.3.5.14 clearLog.

3.1.2.3.35.14.1 Brief Rationale.

The clearLog operation provides the method for removing all of the log records from the Log.
3.1.2.3.35.14.2 Synopsis.

void clearLog ();

3.1.2.3.35.14.3 Behavior.

The clearLog operation shall delete all records from the Log. The clearLog operation shall set
the current size of the Log storage to zero. The clearLog operation shall set the current number
of recordsin the Log to zero. The clearLog operation shall set the logFull availability status
element to false.

3.1.23.35144 Returns.

This operation does not return avalue.

3-12

MSRC-5000SCA
rev. 2.1

3.1.2.3.35.145 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.2.3.3.5.15 destroy.
3.1.2.3.3515.1 Brief Rationae.
The destroy operation provides a means by which an instantiated Log may be torn down.

3.1.2.3.35.15.2 Synopsis.
voi d destroy ();

3.1.2.3.35.15.3 Behavior.

The destroy operation shall release all internal memory and/or storage alocated by the Log. The
destroy operation shall tear down the component (i.e. released from the CORBA environment).

3.1.23.35154 Returns.
This operation does not return avalue.

3.1.2.3.35.15.5 ExceptiongErrors.
This operation does not raise any exception.

3.1.3 Core Framework.

The CF specification includes a detailed description of the purpose of each interface, the purpose
of each supported operation within the interface, and interface class diagrams to support these
descriptions. The corresponding IDL for the CF can be found in Appendix C.

Figure 3-3 depicts the key elements of the CF and the IDL relationships between these elements.
A DomainManager component manages the software Applications, ApplicationFactories,
hardware devices (represented by software Devices) and DeviceManagers within the system. An
Application is atype of Resource and consists of one to many software Resources. Some of the
software Resources may directly control the system’sinterna hardware devices; these Resour ces
arelogical Devices which implement the Device, LoadableDevice, or ExecutableDevice
interfaces. (For example, a ModemDevice may provide direct control of a modem hardware
device such as a Field Programmable Gate Array (FPGA) or an Application Specific Integrated
Circuit (ASIC). An1/ODevice may operate as a device driver to provide external accessto the
system.) Other software Resources have no direct relationship with a hardware device, but
perform application services for the user. (For example, a NetworkResource may perform a
network layer function. A WaveformLinkResource may perform awaveform specific link layer
service.) Each Resource can potentially communicate with other Resources. Devices are
allocated to one or more hardware devices by the DomainManager based upon various factors
including the hardware devices that the DeviceManager knows about, the current availability of
hardware devices, the behavior rules of a Resource, and the loading requirements of the
Resource.

3-13

MSRC-5000SCA

rev. 2.1
Legend
Implemented as Implemented by
Core Application Services Non-Core Applications
Core Framework Interface Core Framework Interface
<<Interface>> <<Interface>> <<Interface>> <<Interface>> P«I “‘e’fa"@S;t
Port PortSupplier LifeCycle TestableObject roperty;
4
inherits
<<Interface>> from
PropertySet
<<Interface>> uses <<Interface>>
Resource [<-===-=------1 ResourceFactory
<<Inter face>> /
Device <<l ntgfac?> < nt.erfaov>
AN Application |t ------------ ApplicationFactory
N . S 0 "
<mEfaces | N\ N S NG - 0".
LoadableDevice . . PR RN applicationFactori
v NN SSRN %
/ \ N AN N S
/ \ AN \\ N
AY -~
N <<Interface>> 0‘ T~
Zinterfaces> i RS
ExecuteableDevice| AggregateDevice devices ~~] <<Interface>>
5 DomainManager
L *
<<Interface>> N 1.
DeviceManager K <<Interface>>| deviceManagers
AN File
AY
\\ /t\
A
\\I 1
il 0"1 <<l nte:faov>
&S5 FileSystem
N
A S
| sg\\®\
1
<l nterface>>
FileManager

Figure 3-3. Core Framework IDL Relationships

The Resour ces being managed by the DomainManager are CORBA objects implementing the
Resource interface. Some Resources may be dependent on other Resources. This interface
provides a consistent way of creating up and tearing down any Resource within the system.
These resources can be created by using a ResourceFactory interface or by the Device interfaces
(Device, LoadableDevice, or ExecutableDevice).

Thefile service interfaces (FileManager, FileSystem, and File) are used for installation and
removal of application files within the system, and for loading and unloading application files on
the various processors that the Devices execute upon.

3.1.3.1 Base Application Interfaces.

Base Application Interfaces are defined by the Core Framework requirements and implemented
by application developers; see 3.2 for Application requirements.

3-14

MSRC-5000SCA
rev. 2.1

3.1.3.1.1 Port.
3.1.3.1.1.1 Description.

This interface provides operations for managing associations between ports. The Port interface
UML isdepicted in Figure 3-4. An application defines a specific Port type by specifying an
interface that inherits the Port interface. An application establishes the operations for
transferring data and control. The application also establishes the meaning of the data and
control values. Examples of how applications may use portsin different ways include: push or
pull, synchronous or asynchronous, mono- or bi-directional, or whether to use flow control (e.g.,
pause, start, stop).

The nature of Port fan-in, fan-out, or one-to-one is component dependent.

Note 1. The CORBA specification defines only a minimum size for each basic IDL type. The
actual size of the data type is dependent on the language (defined in the language mappings) as
well asthe Central Processing Unit (CPU) architecture used. By using these CORBA basic data

types, portability is maintained between components implemented in differing CPU architectures
and languages.

Note 2: How components' ports are connected is described in the software assembly descriptor
(SAD) file of the Domain Profile (3.1.3.4).

313112 UML.

<<Interface>>
Port

®connect Port(connection : in Object, connection! D : in string) : void
Sdi sconnect Port (connectionl D : in string) : void

Figure 3-4. Port Interface UML

3.1.3.1.1.3 Types.
3.1.3.1.1.31 InvalidPort.

The InvalidPort exception indicates one of the following errors has occurred in the specification
of aPort association:

1. errorCode 1 means the Port component isinvalid (unable to narrow object reference)
or illegal object reference,

2. errorCode 2 means the Port name is not found (not used by this Port).

exception InvalidPort { unsigned short errorCode, string nmsg };

3.1.3.1.1.3.2 OccupiedPort.
The OccupiedPort exception indicates the Port is unable to accept any additional connections.
exception COccupi edPort {};

3-15

MSRC-5000SCA
rev. 2.1

3.1.3.1.1.4 Attributes.

N/A.

3.1.3.1.1.5 Operations.
3.1.3.1.1.5.1 connectPort.
3.1.3.1.151.1 Brief Rationale.

Applications require the connectPort operation to establish associations between Ports. Ports
provide channels through which data and/or control pass.

The connectPort operation provides half of atwo-way association; therefore two calls are
required to create a two-way association.

31311512 Synopsis.

voi d connectPort(in Object connection, in string connectionlD) raises
(I'nvalidPort, CccupiedPort);

3.1.3.1.1513 Behavior.

The connectPort operation shall make a connection to the component identified by the input
parameters.

A port may support several connections. The input connectionlD is a unique identifier to be
used by disconnectPort when breaking this specific connection.

31311514 Returns.
This operation does not return avalue.

31311515 ExceptiongErrors.

The connectPort operation shall raise the InvalidPort exception when the input connection
parameter is an invalid connection for this Port.

The connectPort operation shall raise the OccupiedPort exception when unable to accept the
connections because the Port is already fully occupied.

3.1.3.1.1.5.2 disconnectPort.
31311521 Brief Rationae.

Applications require the disconnectPort operation in order to allow consumer/producer data
components to disassociate themselves from their counterparts (consumer/producer).

31311522 Synopsis.

voi d di sconnectPort (in string connectionlD) raises (InvalidPort);

3.1.3.1.1523 Behavior.

The disconnectPort operation shall break the connection to the component identified by the input
parameters.

31311524 Returns.
This operation does not return avalue.

3-16

MSRC-5000SCA
rev. 2.1

31311525 ExceptiongErrors.

The disconnectPort operation shall raise the InvalidPort exception when the name passed to
disconnectPort is not connected with the Port component.

3.1.3.1.2 LifeCycle.

3.1.3.1.2.1 Description.

The LifeCycle interface defines the generic operations for initializing or releasing instantiated
component-specific data and/or processing elements. The LifeCycle interface UML is depicted
in Figure 3-5.

313122 UML.

<<Interface>>

LifeCycle

FWinitialize() : void
®rel easeObject() : v oid

YA
StringSequence

Figure 3-5. LifeCycle Interface UML

3.1.3.1.23 Types.
3.1.3.1.2.3.1 InitidizeError.

The InitializeError exception indicates an error occurred during component initialization. The
message is component-dependent, providing additional information describing the reason why
the error occurred.

exception InitializeError { StringSequence errorMssage; };

3.1.3.1.2.3.2 RdeaseError.

The ReleaseError exception indicates an error occurred during component releaseObject. The
message is component-dependent, providing additional information describing the reason why
the error occurred.

exception Rel easeError { StringSequence errorMssage; };

3.1.3.1.2.4 Attributes.
N/A.

3-17

MSRC-5000SCA
rev. 2.1

3.1.3.1.25 Operations.
3.1.3.1.251 initialize.
31312511 Brief Rationde.

The purpose of the initialize operation is to provide a mechanism to set a component to a known
initial state. (For example, data structures may be set to initial values, memory may be allocated,
hardware devices may be configured to some state, etc.)

3.13.1.251.2 Synopsis.
void initialize() raises (InitializeError);

31312513 Behavior.

Initialization behavior isimplementation dependent.
31312514 Returns.

This operation does not return avalue.

31312515 ExceptiongErrors.

The initialize operation shall raise an InitializeError exception when an initialization error
OCCUrs.

3.1.3.1.25.2 releaseObject.

31312521 Brief Rationae.

The purpose of the releaseObject operation is to provide a means by which an instantiated
component may be torn down.

31312522 Synopsis.

void rel ease(bject() raises (ReleaseError);

31312523 Behavior.

The releaseObject operation shall release all internal memory allocated by the component during
the life of the component. The releaseObject operation shall tear down the component (i.e.
released from the CORBA environment). The releaseObject operation shall release components
from the OE.

31312524 Returns.

This operation does not return avalue.

3.1.3.1.2525 ExceptionsErrors.
The releaseObject operation shall raise a ReleaseError exception when arelease error occurs.

3.1.3.1.3 TestableObject.

3.1.3.1.3.1 Description.

The TestableObject interface defines a set of operations that can be used to test component
implementations. The TestableObject interface UML is depicted in Figure 3-6.

3-18

MSRC-5000SCA
rev. 2.1

313132 UML.

<<Interface>>
TestableObject

WrunTest(testid : in unsigned long, testValues : inout Properties) : woid

|
v

<<CORBAEXxception>>
UnknownProperties

wanvalidProperties : Properties

Figure 3-6. TestableObject Interface UML

3.1.3.1.3.3 Types.
3.1.3.1.3.3.1 UnknownTest.

The UnknownTest exception indicates the requested testid for atest to be performed is not
known by the component.

exception UnknownTest {};

3.1.3.1.3.4 Attributes.
N/A.

3.1.3.1.3.5 Operations.
3.1.3.1.351 runTest.
3.1.3.1.351.1 Brief Rationale.

The runTest operation allows components to be “blackbox” tested. This allows Built-In Test
(BIT) to be implemented and this provides a means to isolate faults (both software and hardware)
within the system.

3.1.3.1.351.2 Synopsis.

void runTest (in unsigned long testid, inout Properties testValues)raises
(UnknownTest, UnknownProperties);

31313513 Behavior.

The runTest operation shall use the testid parameter to determine which of its predefined test
implementations should be performed. The testValues parameter CF Properties (id/value pair(s))
shall be used to provide additional information to the implementation-specific test to be run. The
runTest operation shall return the result(s) of the test in the testVaues parameter.

3-19

MSRC-5000SCA
rev. 2.1

Tests to be implemented by a component are component-dependent and are specified in the
component’ s Properties Descriptor. Valid testid(s) and both input and ouput testValues
(properties) for the runTest operation shall at a minimum be test properties defined in the
properties test element of the component's Properties Descriptor (refer to Appendix D Domain
Profile). Thetestid parameter correspondsto the XML attribute testid of the property element
test in a propertyfile.

A CF UnknownProperties exception is raised by the runTest operation al inputValues properties
shall be validated (i.e., test properties defined in the propertyfile(s) referenced in the
component’s SPD).

The runTest operation shall not execute any testing when the input testid or any of the input
testValues are not known by the component or are out of range.

3.13.13514 Returns.

This operation does not return avalue.

31313515 ExceptiongErrors.
The runTest operation shall raise the UnknownTest exception when there is no underlying test
implementation that is associated with the input testid given.

The runTest operation shall raise the CF UnknownProperties exception when the input parameter
testValues contains any CF DataTypes that are not known by the component’ s test
implementation or any values that are out of range for the requested test. The exception
parameter invalidProperties shall contain the invalid inputValues properties id(s) that are not
known by the component or the value(s) are out of range.

3.1.3.1.4 PortSupplier.

3.1.3.1.4.1 Description.

Thisinterface provides the getPort operation for those components that provide ports.
313142 UML.

<<Interface>>
PortSupplier

®getPort(name : in string) : Object

Figure 3-7. PortSupplier Interface UML

3.1.3.1.4.3 Types.
3.1.3.1.4.3.1 UnknownPort.
The UnknownPort exception israised if an undefined port is requested.

exception UnknownPort { };

3.1.3.1.4.4 Attributes.
N/A.

3-20

MSRC-5000SCA
rev. 2.1

3.1.3.1.45 Operations.
3.1.3.1.45.1 getPort.
31314511 Brief Rationale.

The getPort operation provides a mechanism to obtain a specific consumer or producer Port. A
PortSupplier may contain zero-to-many consumer and producer port components. The exact
number is specified in the component’s Software Profile SCD (section 3.1.3.4). These Ports can
be either push or pull types. Multiple input and/or output ports provide flexibility for
PortSuppliers that must manage varying priority levels and categories of incoming and outgoing
messages, provide multi-threaded message handling, or other special message processing.

31314512 Synopsis.

hj ect getPort(in string nane) raises (UnknownPort);

3.1.3.14513 Behavior.

The getPort operation returns the object reference to the named port as stated in the component's
SCD.

3.1.3.14514 Returns.

The getPort operation shall return the CORBA aobject reference that is associated with the input
port name.

3.1.3.14515 Exceptiong/Errors.
The getPort operation shall raise an UnknownPort exception if the port nameisinvalid.

3.1.3.1.5 PropertySet.
3.1.3.1.5.1 Description.

The PropertySet interface defines configure and query operations to access component
propertied/attributes. The PropertySet interface UML is depicted in Figure 3-8.

3-21

MSRC-5000SCA
rev. 2.1

3.1.3.152 UML.

<<Interface>>
Property Set

®confgure(configP roperties : in Propetties) : void
Wquery(configProperties : inout Properties) : wid

/ AN
L N
<<CORBAEXxception>> <<CORBATypedef>>
UnknownProperties Properties

wanvalidProperties : Properties

Figure 3-8. PropertySet Interface UML

3.1.3.1.5.3 Types.
N/A.

3.1.3.1.5.3.1 InvaidConfiguration.

The InvalidConfiguration indicates the configuration of a component has failed (no configuration
at al wasdone). The message is component-dependent, providing additiona information
describing the reason why the error occurred.. The invalidProperties returned indicate the
properties that wereinvalid.

exception InvalidConfiguration { string nsg; Properties invalidProperties};

3.1.3.1.5.3.2 PartialConfiguration.

The Partial Configuration exception indicates the configuration of a Component was
partiallysuccessful. The invalidProperties returned indicate the properties that were invalid.

exception Partial Configuration { Properties invalidProperties};

3.1.3.1.5.4 Attributes.

N/A.

3.1.3.1.55 Operations.
3.1.3.1.5.51 configure.
3.13.1551.1 Brief Rationale.

The configure operation allows id/value pair configuration properties to be assigned to
components implementing this interface.

3-22

MSRC-5000SCA
rev. 2.1

3.1.3.1551.2 Synopsis.

void configure(in Properties configProperties) raises (lnvalidConfiguration
Parti al Configuration);

3.1.3.1.551.3 Behavior.

The configure operation shall assign valuesto the properties as indicated in the configProperties
argument. Valid properties for the configure operation shall at a minimum be the configure
readwrite and writeonly properties referenced in the component’ s SPD.

3.1.3.15514 Returns.

This operation does not return avalue.

3.1.3.15515 ExceptionsErrors.
The configure operation shall raise a Partial Configuration exception when some configuration
properties were successfully set and some configuration properties were not successfully set.

The configure operation shall raise an InvalidConfiguration exception when a configuration error
occurs that prevents any property configuration on the component.

3.1.3.1.55.2 query.

3.13.15521 Brief Rationale.

The query operation allows a component to be queried to retrieve its properties.

3.1.3.15522 Synopsis.

voi d query(inout Properties configProperties) raises (UnknownProperties);

3.1.3.1.55.23 Behavior.

If the configProperties are zero size then, the query operation shall return all component
properties. If the configProperties are not zero size, then the query operation shall return only
those id/value pairs specified in the configProperties. Valid properties for the query operation
shall at aminimum be the configure readwrite and readonly properties, and allocation properties
that have an action value of “external” as referenced in the component’s SPD.

3.1.3.15524 Returns.

This operation does not return avalue.

3.1.3.1.5525 ExceptionsErrors.

The query operation shall raise the CF UnknownProperties exception when one or more
properties being requested are not known by the component.

3.1.3.1.6 Resource.

3.1.3.1.6.1 Description.

The Resource interface provides a common API for the control and configuration of a software
component. The Resource interface UML is depicted in Figure 3-9.

The Resource interface inherits from the LifeCycle, PropertySet, TestableObject, and
PortSupplier interfaces. |

The inherited LifeCycle, PropertySet, TestableObject, and PortSupplier interface operations are
documented in their respective sections of this document. |

3-23

MSRC-5000SCA
rev. 2.1

The Resource interface may aso be inherited by other application interfaces as described in the
Software Profile's Software Component Descriptor (SCD) file (see 3.1.3.4).

3.1.3.1.6.2 UML.

<<Interface>> <<Interface>>
<<Interface>> LifeCycle PropertySet <<Interface>>
PortSupplier TestableObject
Winitialize() Wconfigure()
SgetPort() WreleaseObject() Wauery() SrunTest()
inherits
from

<<Interface>>
Resource

Wstart() : void
®Wstop() : wid

Figure 3-9. Resource Interface UML

3.1.3.1.6.3 Types.
3.1.3.1.6.3.1 UnknownPort.
The UnknownPort exception israised if an undefined port is requested.

exception UnknownPort { };

3.1.3.1.6.3.2 StartError.

The StartError exception indicates that an error occurred during an attempt to start the Resource.
The message is component-dependent, providing additiona information describing the reason
for the error and the severity of the error.

exception StartError { string nsg };

3.1.3.1.6.3.3 StopError.

The StopError exception indicates that an error occurred during an attempt to stop the Resource.
The message is component-dependent, providing additiona information describing the reason
for the error and the severity of the error.

exception StopError { string nmsg };

3.1.3.1.6.4 Attributes.
N/A.

3-24

MSRC-5000SCA
rev. 2.1

3.1.3.1.6.5 Operations.

3.1.3.1.651 stop.

31316511 Brief Rationae.

The stop operation is provided to command a Resour ce implementing this interface to stop
internal processing.

3.1.3.1651.2 Synopsis.

void stop()raises (StopError);

3.1.3.1.65.1.3 Behavior.

The stop operation shall disable al current operations and put the Resource in a non-operating
condition. Subsequent configure, query, and start operations are not inhibited by the stop
operation.

31316514 Returns.

This operation does not return avalue.

31316515 ExceptionsErrors.

The stop operation shall raise the StopError exception if an error occurs while stopping the
resource.

3.1.3.1652 dart.

3.13.16521 Brief Rationale.

The start operation is provided to command a Resour ce implementing this interface to start
internal processing.

3.1.31.6.522 Synopsis.
void start()raises (StartError);

3.1.3.1.6523 Behavior.
The start operation puts the Resource in an operating condition.

31316524 Returns.
This operation does not return avalue.

3.1.3.1.6.525 ExceptiongErrors.

The start operation shall raise the StartError exception if an error occurs while starting the
resource.

3.1.3.1.6.5.3 getPort.
3.1.31.6531 Brief Rationae.

The getPort operation provides a mechanism to obtain a specific consumer or producer Port. A
Resource may contain zero-to-many consumer and producer port components. The exact
number is specified in the component’ s Software Profile SCD (section 3.1.3.4). These Ports can
be either push or pull types. Multiple input and/or output ports provide flexibility for
Applications and Resources that must manage varying priority levels and categories of incoming
and outgoing messages, provide multi-threaded message handling, or other special message
processing.

3-25

MSRC-5000SCA
rev. 2.1

3.1.3.16532 Synopsis.

hj ect getPort(in string nane) raises (UnknownPort);

3.1.3.1.6.5.3.3 Behavior.

The getPort operation shall return the object reference to the named port as stated in the
Resource's SCD.

3.1.3.1.65.34 Returns.

The getPort operation returns the CORBA object reference that is associated with the input port
name.

3.1.3.1.6.535 ExceptiongErrors.

The getPort operation shall raise an UnknownPort exception if the port nameis
invalid.ResourceFactory.

3.1.3.1.7.1 Description.

A ResourceFactory is used to create and tear down a Resource. The ResourceFactory interface
is designed after the Factory Design Patterns. The ResourceFactory interface UML is depicted
in Figure 3-10. The factory mechanism provides client-server isolation among Resour ces (e.g.,
Network, Link, Modem, I1/O, etc.) and provides an industry standard mechanism of obtaining a
Resource without knowing itsidentity. An application is not required to use ResourceFactories
to obtain, create, or tear down resources. A Software Profile will determine which application
ResourceFactories are to be used by the ApplicationFactory.

313172 UML.

<<| nterface>>
ResourceFactory

WcreateResource(resourceNumber : in ResourceNumType, qualifiers : in Properties) : Resource
WreleaseResource(resourceNumber : in ResourceNumType) : void
Bshutdown() : void

’ y

<<Interface>>
Resource

L
Properties

Figure 3-10. ResourceFactory Interface UML

3.1.3.1.7.3 Types.
3.1.3.1.7.3.1 ResourceNumType.
This type defines the identity of a Resource created by the ResourceFactory.

t ypedef unsi gned short ResourceNunilype.

3-26

MSRC-5000SCA
rev. 2.1

3.1.3.1.7.3.2 InvaidResourceNumber.

The InvalidResourceNumber exception indicates the resourceNumber does not exist in the
Factory.

exception I nvali dResourceNunber { };

3.1.3.1.7.3.3 ShutdownFailure.

The ShutdownFailure exception indicates that the shutdown method failed to release the
ResourceFactory from the CORBA environment due to the fact the Factory still contains
Resources. The message is component-dependent, providing additional information describing
why the shutdown failed.

exception ShutdownFailure { string nsg };

3.1.3.1.7.4 Attributes.
N/A.

3.1.3.1.7.5 Operations.
3.1.3.1.7.5.1 createResource.
31317511 Brief Rationae.

The createResour ce operation provides the capability to create Resources in the same process
space as the Resour ceFactory or to return a Resour ce that has already been created. This
behavior is an aternative approach for creating a Resour ce to the Device execute operations.

3.13.1.751.2 Synopsis.

The resourceNumber isthe identifier for Resource. The qualifiers are parameter values used by
the ResourceFactory in creation of the Resource. The ApplicationFactory can determine the
values to be supplied for the qualifiers from the description in the ResourceFactory’ s Software
Profile. The qualifiers may be used to identify, for example, specific subtypes of Resources
created by a ResourceFactory.

Resource createResource (in ResourceNunfype resourceNunber, in Properties
qualifiers);

31317513 Behavior.

If no Resource exists for the given resourceNumber, the createResour ce operation shall create a
Resource. If the Resource aready exists, that Resource is returned. ThecreateResource
operation shall assign the given resourceNumber to a new Resource and set a reference count to
one or, in the case that the Resour ce already exists, increment the count by one. The reference
count is used to indicate the number of times that a specific Resource reference has been given to
requesting clients. This ensures that the Resour ceFactory does not release a Resource that has a
reference count greater than 0. (Multiple clients could request the rel ease of the Resour ce after
obtaining areference to the Resour ce).

3.1.3.1.7514 Returns.

The createResour ce operation shall return areference to the created Resource or the existing
Resource. The createResource operation shall return anil CORBA component reference when
the operation is unable to create or find the Resource.

3-27

MSRC-5000SCA
rev. 2.1

31317515 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.3.1.7.5.2 releaseResource.
3.1.3.1.7521 Brief Rationde.

In CORBA thereis client side and server side representation of a Resource. The

releaseResour ce operation provides the mechanism of releasing the Resource in the CORBA
environment on the server side when all clients are through with a specific Resource. The client
still hasto release its client side reference of the Resource.

3.13.1.7522 Synopsis.

voi d rel easeResource(i n ResourceNumlype resourceNunber) raises
{1 nval i dResour ceNumnber) ;

31317523 Behavior.

The releaseResour ce operation shall decrement the reference count for the specified resource, as
indicated by the resourceNumber. The releaseResource operation shall make the Resource
nolonger avaliable (i.e. it isreleased from the CORBA environment) when the Resource’s
referencecount is zero.

31317524 Returns.

This operation does not return avalue.

3.13.1.7525 ExceptiongErrors.

The releaseResour ce operation shall raise the InvalidResourceNumber exception if aninvalid
resourceNumber is received.

3.1.3.1.7.5.3 shutdown.
3.1.3.1.753.1 Brief Rationde.

In CORBA thereis client side and server side representation of a ResourceFactory. The
shutdown operation provides the mechanism for releasing the Resour ceFactory from the
CORBA environment on the server side. The client has the responsibility to release its client
side reference of the ResourceFactory.

3.1.3.1.753.2 Synopsis.
voi d shutdown()rai ses {ShutdownFail ure);

3.1.3.1.7533 Behavior.

The shutdown operation shall result in the ResourceFactory being unavailable to any subsequent
callsto its object reference (i.e. it isreleased from the CORBA environment).

3.131.7534 Returns.
This operation does not return avalue.

3.1.31.7535 ExceptionsErrors.
This operation does not raise any exceptions.

3-28

MSRC-5000SCA
rev. 2.1

3.1.3.2 Framework Control Interfaces.

“Framework control within a Domain is accomplished by domain management, device,
anddevice management interfaces.

The Domain Management interfaces are Application, ApplicationFactory, and DomainManager.
These interfaces manage the registration and unregistration of applications, devices, and
devicemanagers within the domain and the controlling of applications within the domain.
Theimplementation of the Application, ApplicationFactory, and DomainManager interfaces
arecoupl ed together and must be delivered together as a complete domain
managementimplementation and service.

The device interfaces are for the implementation and management of logical Devices within
thedomain. The devices within the domain can be simple devices with no loadable, executable,
oraggregate device behavior, or devices with a combination of these behaviors. The device
interfaces are Device, LoadableDevice, ExecutableDevice, and AggregateDevice.

Device management is accomplished by the DeviceManager interface. The DeviceManager
isresponsible for creation of logical Devices and launching service applications on these logical
Devices.

Framework Control Interfaces shall be implemented using the CF IDL presented in AppendixC.

3.1.3.2.1 Application.

3.1.3.2.1.1 Description.

The Application class provides the interface for the control, configuration, and status of an
instantiated application in the domain.

The Application interface class inherits the IDL interface of Resource. A created application
instance may contain Resource components and/or non-CORBA components. The Application
interface UML is depicted in Figure 3-11.

The Application interface rel easeObject operation provides the interface to rel ease the
computing resources allocated during the instantiation of the Application, and de-allocate the
devices associated with Application instance.

An instance of an Application is returned by the create operation of an instance of the
ApplicationFactory class.

3-29

MSRC-5000SCA
rev. 2.1

313212 UML.

<<Interface>>
Resource

<<Interface>>
Application

wprofile : string

whame : string

wcomponentNamingContexts : ComponentElementSequence
wcomponentProcesslds : ComponentProcessldSequence
wcomponentDevices : DeviceAssignmentSequence
wcomponentimplementations : ComponentElementSequence

Vv
<<CORBATypedef>>
DeviceAssignmentSequence

Figure 3-11. Application Interface UML
3.1.3.2.1.3 Types.

3.1.3.2.1.3.1 ComponentProcessldType
The ComponetProcessldType defines a type for associating a component with its process ID.
Thistype can be used to retrieve a process ID for a specific component.

struct Conponent Processl dType
{

string conponentl D,
unsi gned | ong processlD;

3-30

MSRC-5000SCA
rev. 2.1

3.1.3.2.1.3.2 ComponentProcessldSequence

The ComponetProcessl dSequence type defines an unbounded sequence of components process
IDs.

typedef sequence <Conponent Processl dType> Conponent Processl dSequence;

3.1.3.2.1.3.3 ComponentElementType

The ComponentElementType defines atype for associating a component with an element (e.g.,
naming context, implementation 1D).

struct Conponent El enent Type
{

string conponentl D,
string el ement| D

1
3.1.3.2.1.34 ComponentElementSequence

The componentElementSequence defines an unbounded sequence of components' with an
associated el ement.

typedef sequence <ConponentEl ement Type> Conponent El enent Sequence;

3.1.3.21.4 Attributes.

3.1.3.2.1.4.1 profile.

This profile attribute contains the Software Profile (3.1.3.4). CORBA-capable and non-CORBA-
capable components have Profile files.

The readonly profile attribute shall contain either a profile element with afile reference to the
SAD profilefile or the XML for the SAD profile. Filesreferenced within a profile will have to
be obtained from a FileManager. The Application will have to be queried for profile information
for component files that are referenced by an ID instead of afile name.

readonly attribute string profile;

3.1.3.2.1.4.2 name.

This readonly name attribute shall contain the name of the created Application. The
ApplicationFactory interface’ s create operation name parameter provides the name content.

readonly attribute string nane;

3.1.3.2.1.4.3 componentNamingContexts.

The componentNamingContexts attribute shall contain the list of components' Naming Service
Context within the Application for those components using CORBA Naming Service.

readonly attribute Conponent El enent Sequence conponent Nam ngCont ext s;

3.1.3.2.1.4.4 componentProcesslds.

The componentProcesslds attribute shall contain the list of components’ process IDs within the
Application for components that are executing on a device.

readonly attribute Conponent Processl dSequence component Processl ds;

3-31

MSRC-5000SCA
rev. 2.1

3.1.3.2.1.4.5 componentDevices.

The componentDevices attribute shall contain alist of components’ device assignments within
the application. Each component (componentinstantiation element in the Application’s software
profile) is associated with a device.

readonly attribute Devi ceAssi gnnent Sequence conponent Devi ces;

3.1.3.2.1.4.6 componentlmplementations.
The componentImplementations attribute shall contain the list of components SPD
implementation 1Ds within the Application for those components created.

readonly attribute Conponent El enent Sequence conponent | npl enent ati ons;

3.1.3.2.1.5 Genera Class Behavior.

The Application shall delegate the implementation of the inherited Resour ce operations (runTest,
start, stop, configure, and query) to the application’s assemblycontroller Resource. The
Application shall propagate exceptions raised by the application’ s assemblycontroller’s

operations. The initialize operation shall not be propagated to Application components or the
assemblycontroller, and causes no action within an Application.

3.1.3.2.1.6 Operations.
3.1.3.2.1.6.1 releaseObject.
3.1.32.16.1.1 Brief Rationale.

The releaseObject operation terminates execution of the Application, returns all allocated
computing resources, and de-allocates the devices associated with Application. Before
terminating, the Application removes the message connectivity with its associated Applications
(e.g. Ports, Resources, and Logs) in the domain.

3.1.3216.1.2 Synopsis.

void rel ease(hject() raises (ReleaseError);

3.1.3.21.6.1.3 Behavior.
The following behavior isin addition to the LifeCycle releaseObject operation behavior.

For each Application component not created by a Resour ceFactory, the releaseObject operation
shall release the component by utilizing the Resources' s rel easeObject operation. If the
component was created by a Resour ceFactory, the releaseObject operation shall release the
component by the Resour ceFactory releaseResour ce operation. The releaseObject operation
shall shutdown a ResourceFactory when no more Resour ces are managed by the
ResourceFactory. For each allocated device capable of operation execution, the rel easeObject
operation shall terminate all processes / tasks of the Application’s components utilizing the
Device' s terminate operation.

For each allocated device capable of memory function, the releaseObject operation shall de-
allocate the memory associated with Application’s component instances utilizing the Device's
unload operation.

3-32

MSRC-5000SCA
rev. 2.1

The releaseObject operation shall deallocate the Devices that are associated with the Application
being released, based on the Application’s Software Profile. The actual devices deallocated
(Device deallocateCapacity) will reflect changes in capacity based upon component capacity
requirements deall ocated from them, which may also cause state changes for the Devices.

The Application shall release all client component references to the Application components.

The releaseObject operation shall disconnect Ports from other Ports that have been connected
based upon the software profile.

For components (e.g., Resour ce, ResourceFactory) that are registered with Naming Service, the
releaseObject operation shall unregister those components from Naming Service.

The releaseObject operation for an application shall disconnect Ports first, then release the
Resources and ResourceFactories, then call the terminate operation, and lastly call the unload
operation on the devices.

The releaseObject operation shall, upon successful Application release, write an
ADMINISTRATIVE_EVENT log record.

The releaseObject operation shall, upon unsuccessful Application release, write a
FAILURE_ALARM log record.

The following steps demonstrate one scenario of the Application’s behavior for the release of an
Application that contains Resour ceFactory behavior:

1. Client invokes releaseObject operation.
Disconnects Ports.

Release the Resour ceFactory components.
Shutdown the Resour ceFactory components.
Release the Resour ce components.
Terminate the component’ s processes.
Unload the component’ s executable images.

© N o g k0D

Change the state of the associated device entries in the Domain Profile to be
available, along with device(s) memory utilization availability and processor
utilization availability based upon the Device Profile and Software Profile.

9. Unbind application components from Naming Service.

10. Log an Event indicating that the Application was either successfully or unsuccessfully
released.

11. Remove the Application reference from the applications attribute.
Figure 3-12 is a collaboration diagram depicting the behavior as described above.

3-33

MSRC-5000SCA
rev. 2.1

1: releaseObject() 10: writeRecords(in ProducerLogRecordSequence)
: Application — : Log

CORBA Naming
Senice

\&8: deallocateCapacity(in Properties)

==

- Comm User

9: unbind naming context
—

\& 7: terminate(n
g‘/ X/\V ProcessID_Type

3: releaseResource(in
ResourceNumType)
4: shutdown()

6: unload(in string)

[
[‘ : ExecutableDevice ‘
[

%5: releaseObject()

[
[
: ResourceFactory

LoadableDevice

Figure 3-12. Application Behavior

31321614 Returns.
This operation does not return avalue.

3.1.3216.15 ExceptiongErrors.

The releaseObject operation shall raise a ReleaseError exception when the rel easeObject
operation unsuccessfully rel eases the Application components due to internal processing errors.
3.1.3.2.1.6.2 getPort.

3.1.3216.21 Brief Rationale.

The getPort operation obtains a specific visible Port (e.g. command & control (HCI), data
(red_io or black_io), responses of the Application.

3.1.3216.22 Synopsis.

hj ect getPort(in string nane) raises (UnknownPort);

3.1.3.2.1.6.2.3 Behavior.

The getPort operation returns object references for port names that are in the Application SAD
exter nalports element.

3.1.3.216.24 Returns.

The getPort operation shall return object references only for input port names that match the port
names that are in the Application SAD externalports element.

3.1.3.21.6.25 ExceptiongErrors.
The getPort operation shall raise an UnknownPort exception if the port isinvalid.

3-34

MSRC-5000SCA
rev. 2.1

3.1.3.2.2 ApplicationFactory.
3.1.3.2.2.1 Description.

The ApplicationFactory interface class provides an interface to request the creation of a specific
type of Application in the domain.

The ApplicationFactory interface class is designed using the Factory Design Pattern. The
Software Profile determines the type of Application that is created by the ApplicationFactory.

3.1.3.222 UML.

<<Interface>>
ApplicationFactory

hame : string
wsoftwareProfile : string

®create(name : in string, initConfiguration : in Properties, deviceAssignments : in DeviceAssignmentSequence) : Application

<<CORBATypedef>> <<lInterface>> <<CORBATypedef>>
DeviceAssignmentSequence Application StringSequence

Figure 3-13. ApplicationFactory UML

3.1.3.2.2.3 Types.
3.1.3.2.2.3.1 CreateApplicationRequestError Exception.

The CreateA pplicationRequestError exception is raised when the parameter CF
DeviceAssignmentSequence contains one (1) or more invalid Application component-to-device
assignment(s).

exception CreateApplicationRequestError

{
}

3.1.3.2.2.3.2 CreateApplicationError Exception.

The CreateApplicationError exception is raised when a create request is valid but the
Application is unsuccessfully instantiated due to internal processing errors.

Devi ceAssi gnment Sequence i nval i dAssi gnnent ;

exception CreateApplicationError

{
}

StringSequence error Messages;

3.1.3.2.2.3.3 Exception InvalidinitConfiguration
The InvaidinitConfiguration exception is raised when the input initConfiguration parameter is
invalid.

exception InvalidlnitConfiguration

{

3-35

MSRC-5000SCA
rev. 2.1

Properties invalidProperties;
1
3.1.3.2.2.4 Attributes.
3132241 name.

The readonly name attribute shall contain the type of Application that can be instantiated by the
ApplicationFactory.

readonly attribute string nane;

3.1.3.2.2.4.2 softwareProfile.

The softwareProfile attribute contains the Software Profile for the Application that can be created
by the ApplicationFactory.

The readonly softwareProfile attribute shall contain either a profile element with afile reference
to the SAD profile or the XML for the SAD profile. Files referenced within the profile will have
to be obtained from a FileManager. The ApplicationFactory will have to be queried for profile
information for component files that are referenced by an ID instead of afile name.

readonly attribute string softwareProfile;

3.1.3.2.2.5 Operations.

3.1.3.2.251 create

31322511 Brief Rationale.

The create operation is used to create an Application within the system domain.

The create operation provides a client interface to request the creation of an Application on client
requested device(s) or the creation of an Application in which the ApplicationFactory determines
the necessary device(s) required for instantiation of the Application.

31322512 Synopsis.

Application create(in string name, in Properties initConfiguration, in
Devi ceAssi gnnent Sequence devi ceAssi gnnents) raises (CreateApplicationError
Creat eAppl i cati onRequest Error, InvalidlnitConfiguration);

31322513 Behavior.

An Application can be comprised of one or more components (e.g., Resources, Devices, €tc.).
The SAD contains Software Package Descriptors (SPDs) for each Application component. The
SPD specifies the Device implementation criteriafor loading dependencies (processor kind, etc.)
and processing capacities (e.g., memory, process) for an application component. The create
operation shall use the SAD SPD implementation element to locate candidate devices capable of
loading and executing Application components.

If deviceAssignments (not zero length) are provided, the ApplicationFactory verifies each device
assignment, for the specified component, against the component’s SPD implementation element.

The create operation shall allocate (Device allocateCapacity) component capacity requirements
against candidate devices to determine which candidate devices satisfy al SPD implementation
criteriarequirements and SAD partitioning requirements (e.g., components HostCollocation,
etc.). The create operation shall only use Devices that have been granted successful capacity

3-36

MSRC-5000SCA
rev. 2.1

allocations for loading and executing Application components, or used for data processing. The
actual Devices chosen will reflect changes in capacity based upon component capacity
requirements allocated to them, which may also cause state changes for the Devices.

The create operation shall load the Application components (including all of the Application-
dependent components) to the chosen device(s).

The create operation shall execute the application components (including all of the application-
dependent components) as specified in the component’ s SPD implementation element’ s code
element. The create operation shall use the component’ s SPD implementation code' s stacksize
and priority elements, when specified, for the execute options parameters. Parameters passed to
entry points shall be in the form of a naming context parameter with an ID of
“NAMING_CONTEXT” and string value of (/ DomainName / NodeName / [other context
sequences]) / ComponentName_Uniqueldentifier, when the component object reference isto be
retrieved from a Naming Service asindicated by the SAD. When the NAMING_CONTEXT
parameter is used, the create operation shall form a naming service IOR with the format of an ID
of “NAMING_SERVICE_IOR” and string value of the CORBA Naming Service IOR that the
ApplicationFactory isusing. The unique identifier is determined by the implementation, unique
to each node. The create operation uses this naming string to form component names that need
to be retrieved from Naming Service. (See also section 3.2.1.3.) Due to the dynamics of bind
and resolve to Naming Service, the create operation should provide sufficient attempts to
retrieve component object references from Naming Service prior to generating an exception.

In the naming parameter string, each “slash” (/) represents a separate naming context. A naming
context is made up of ID and kind pair, which isindicated by “id.kind” in the naming parameter
string. The naming context kind is optional and when not specified a null string will be used.

The NodeName naming context ID value is the label of the DeviceManager in which the
component was loaded and going to be executed.

The ComponentName naming context 1D value is the component instantiation findcomponent
findby Naming Service name element value in the software assembly descriptor (SAD).

The create operation shall pass the componentinstantiation element “execparam” properties that
have values as parameters to execute operation. The create operation passes “ execparam”
parameters values as string values.

The create operation shall, in order, initialize Resources, then establish connections for
Resources, and finally configure the Resour ces.

The create operation will only configure the application’s assemblycontroller component.

The create operation shall initialize an Application component provided the component
implements the LifeCycle interface.

The create operation shall configure an application’s assemblycontroller component provided the
assemblycontroller has configure readwrite or writeonly properties with values. The create
operation shall use the union of the input initConfiguration properties of the create operation and
the assemblycontroller’ s componentinstantiation writeable “ configure” properties that have
values. Theinput initConfiguration parameter shall have precedence over the
assemblycontroller’ s writeable “configure” property values. The create operation, when creating
a component from a Resour ceFactory, shall pass the componentinstantiation

3-37

MSRC-5000SCA
rev. 2.1

componentresour sefactoryref element “factoryparam” properties that have values as qualifiers
parameters to the referenced ResourceFactory component’ s createResour ce operation.

The create operation shall interconnect Application components' (Resources or Devices) ports
in accordance with the SAD. It shall be possible to obtain Ports in accordance with the SAD via
PortSupplier getPort operation. The create operation shall use the SAD connectinterface
element id attribute as the unique identifier for a specific connection when provided. The create
operation shall create a connection ID when no SAD connectinterface element attributeid is
specified for a connection. The create operation shall obtain a Resour ce in accordance with the
SAD viathe CORBA Naming Service, ResourceFactory, or astringified IOR.

TheResour ceFactory can be obtained by using the CORBA Naming Service or astringified IOR
as stated in the SAD.

The create operation shall pass, with invocation of each ResourceFactory createResource
operation, the Resour ceFactory configuration properties associated with that Resource as
dictated by the SAD.

The dependenciesto Log, FileManager, FileSystem, and CORBA Naming Service will be
specified as connections in the SAD using the domainfinder element. The create operation will
establish these connections. For connections established for aLog, the create operation shall
create a unique producer log ID for each log producer. The create operation shall invoke the
PropertySet configure operation once, and only once, per log producer (as described by the SAD
usesport element) in order to set its unique PRODUCER_LOG _ID (see section 3.1.3.3.5.5.1.2
for details).

If the Application is successfully created, the create operation shall return an Application
component reference for the created Application. A sequence of created Application references
can be obtained using the DomainManager getApplications operation.

The create operation shall, upon successful Application creation, write an
ADMINISTRATIVE_EVENT log record.

The create operation shall, upon unsuccessful Application creation, writeaFAILURE_ALARM
log record.

The dependencies to Log, FileManager, and FileSystem will appear as connections in the SAD
using the domainfinder element. The create operation will establish these connections. For
connections established for a Log, the create operation shall create a unique producer log ID one
time for each log producer. The create operation shall invoke the PropertySet configure
operation one time per log producer (as described by the SAD usesport element) in order to set
its unique PRODUCER_LOG _ID (see section 3.1.3.3.5.5.1.2 for details).

The following steps demonstrate one scenario of the ApplicationFactory’ s behavior for the
creation of an Application:

1. Client invokes the create operation.

2. Evaluate the Domain Profile for available Devices that meet the Application’s
memory and processor requirements, available Dependent Applications (e.g., I/0 or
Utility resources), and dependent libraries needed by the Application. Create an
instance of an Application, if the requested Application can be created. Update the
Device(s) memory and processor utilization.

3-38

MSRC-5000SCA
rev. 2.1
3. Allocate the Device(s) memory and processor utilization.

4. Load the Application components on the devices using the appropriate Device(s)
interface provided the Application component hasn’t already been |oaded.

5. Execute the Application components on the devices using the appropriate Device
interface as indicated by the application’s Software Profile.

6. Obtain the component reference (Resource or Resour ceFactory) as described by the
SAD.

7. If the component obtained from CORBA Naming Servicesis a ResourceFactory as
indicated by the SAD, then narrow the component reference to be a ResourceFactory
component.

8. If the component is a ResourceFactory, then create a Resource using the
ResourceFactory interface.

9. If the components obtained from Naming Services are Resour ces supporting the
Resource interface as indicated by the SCDs, then narrow the components reference
to be Resource components.

10. Initialize the Application.

11. Get ports for the resources in order to interconnect the Resources ports together.
12. Connect the ports that interconnect the Resources’ ports together.

13. Configure the Application.

14. Return the Application object reference and log message.

Figure 3-14 is a collaboration diagram depicting the behavior as described above.

3-39

MSRC-5000SCA

1: create(in string, in Properties, in DeviceAssignmentSequence) 14: writeRecords(in ProducerLogRecordSequence)
=
% —x> : ApplicationFactory :log
Comm user
12: Connect the ports that
N interconnect the Resources

2: Evaluate & Obtain

Application Profile Domain
Instance _ Profile

3: allocateCa x\i\ 9: _narrow()

Producer :
Port
pacity(in 10: initialize()

Properties) Zf/ 11: getPort(in string)

% %ﬁ X/N 13: configure(in Properties)
4: load(in 5: execute(in

FileSystem, in string, in 7: _narrow()

string, in : . . 8: createResource(in
LoadType) Propgnles, 6: Obtain component ResourceNumType, in

n reference per SAD :
) Properties
Properties) (Resource or P)
ResourceFactory) -
‘ [Resource
LoadableDevice [‘R Fact
- : ResourceFactory
[CORBANaming

: ExecutableDenice Senvices

Figure 3-14. ApplicationFactory Behavior

3.1.3.22514 Returns.
The create operation returns a duplicated Application reference for the created Application.

31322515 ExceptiongErrors.

The create operation shall raise the CreateA pplicationRequestError exception when the
parameter CF DeviceA ssignmentSequence contains one (1) or more invalid Application
component to device assignment(s).

The create operation shall raise the CreateA pplicationError exception when the create request is
valid but the Application can not be successfully instantiated due to internal processing error(s).

The create operation shall raise the InvalidinitConfiguration exception when the input
initConfiguration parameter isinvalid. The InvalidinitConfiguration invalidProperties shall
identify the property that isinvalid.

3.1.3.2.3 DomainManager.

3.1.3.2.3.1 Description.

The DomainManager interfaceis for the control and configuration of the system domain.

The DomainManager interface can be logically grouped into three categories: Human Computer
Interface (HCI), Registration, and CF administration.

The HCI operations are used to configure the domain, get the domain’s capabilities (Devices,
Services, and Applications), and initiate maintenance functions. Host operations are performed
by an HCI client capable of interfacing to the DomainManager .

The registration operations are used to register / unregister DeviceManagers, DeviceManager’s
Devices, DeviceManager’s Services, and Applications at startup or during run-time for dynamic
device, service, and application extraction and insertion.

3-40

MSRC-5000SCA
rev. 2.1

The administration operations are used to access the interfaces of registered DeviceManagers
and DomainManager's FileManager.

3.1.3.2.32 UML.
The DomainManager Interface UML is depicted in Figure 3-15.

<<Interface>>

DomainManager
o agers : Devit agerSequence
‘Bapplications : ApplicationSequence
SapplicationFactories : ApplicationFactorySequence
SfileMgr : FileManager

WregisterDevice(registeringDevice : in Device, regi fi : in Devi) = woid
®registerDevi 1ager(devi :in Devi 1ager) : wid

®unregisterDevi ager(devi : in Devi) : void
®unregisterDevice(unregisteringDevice : in Device) : void

HinstallApplication(profileFileName : in string) : void

®uninstallApplication(applicationID : in string) : void

/ / / uses \ \
<<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interface>>| |<<CORBAException>>| | <<CORBAException>> | [<<CORBAException>>
Application ApplicationFactory Device DeviceManager FileManager InvalidFileName InvalidObjectReference InvalidProfile

Figure 3-15. DomainManager Interface UM L

3.1.3.2.3.3 Types.
3.1.3.2.3.3.1 exception ApplicationinstallationError.

The ApplicationinstallationError exception type is raised when an Application installation has
not completed correctly.

exception ApplicationlnstallationError {};

3.1.3.23.3.2 Invalididentifier.
The Invalididentifier exception indicates an application identifier isinvalid.

exception Invalidldentifier {};

3.1.3.2.3.3.3 DeviceManagerSequence.
This type defines an unbounded sequence of DeviceManager (s).

typedef sequence <Devi ceManager > Devi ceManager Sequence

3.1.3.2.3.3.4 ApplicationSequence.
This type defines an unbounded sequence of Application(s).

typedef sequence < Application> ApplicationSequence

3.1.3.2.3.3.5 ApplicationFactorySequence.
This type defines an unbounded sequence of ApplicationFactory(s).

typedef sequence < ApplicationFactory> Applicati onFactorySequence

3-41

MSRC-5000SCA
rev. 2.1

3.1.3.2.3.3.6 DeviceManagerNotRegistered Exception

The DeviceM anagerNotRegistered exception indicates the registering Device' s DeviceManager
is not registered in the DomainManager. A Device's DeviceManager has to be registered prior
to a Device registration to the DomainManager.

excepti on Devi ceManager Not Regi stered {};

3.1.3.23.4 Attributes.
3.1.3.2.34.1 deviceManagers.

The deviceManagers attribute is read-only containing a sequence of registered DeviceManagers
in the domain. The readonly deviceManagers attribute shall contain alist of registered
DeviceManagers that have registered with the DomainManager. The DomainManager shall
write an ADMINISTRATIVE_EVENT log to a DomainManager’s Log, when the
deviceManagers attribute is obtained by a client.

readonly attribute Devi ceManager Sequence devi ceManagers;

3.1.3.2.34.2 applications.

The applications attribute is read-only containing a sequence of instantiated Applicationsin the
domain. The readonly applications attribute shall contain the list of Applications that have been
instantiated. The DomainManager shall writean ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the application’ s attribute is obtained by a client.

readonly attribute ApplicationSequence applications;

3.1.3.2.3.4.3 applicationFactories.

The readonly applicationFactories attribute shall contain alist with one ApplicationFactory per
application (SAD file and associated files) successfully installed (i.e. no exception raised). The
DomainManager shall writean ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the applicationFactories attribute is obtained by a client.

readonly attribute ApplicationFactorySequence
appl i cationFactori es;
3.1.3.2344 fileMgr.

The readonly fileMgr attribute shall contain the DomainManager’ s FileManager. The
DomainManager shall write an ADMINISTRATIVE_EVENT log record to a
DomainManager’s Log, when the fileMgr attribute is obtained by a client.

readonly attribute Fil eManager fil eMr;

3.1.3.2.3.45 DomainManagerProfile.
The domainManagerProfile attribute contains the DomainManager’ s profile.

The readonly domainManagerProfile attribute shall contain either a profile element with afile
reference to the DomainManager Configuration Descriptor (DMD) profile or the XML for the
DomainManager’s (DMD) profile. Filesreferenced within the profile will have to be obtained
from the DomainManager’ s FileManager.

readonly attribute string domai nManager Profil e;

3-42

MSRC-5000SCA
rev. 2.1

3.1.3.2.3.5 Genera Class Behavior.

During component construction the DomainManager shall register itself with the CORBA
Naming Serviceif available. During Naming Service registration the DomainManager shall
create a naming context of "/DomainName" and bind the DomainManager’ s name with the
created context. (If the CORBA Naming Serviceis not provided in an OE, DomainM anager
clients (e.g., DeviceManager) will have stringified IORs in their software profile entry in the
Domain Profile)) (Seealso 3.1.3.2.2.5.1.3)

A DomainManager implementation may log to 0 to many Logs. The Logs utilized by the
DomainManager implementation shall be defined in the DMD. See Appendix D for further
description of the DMD file.

Once a service specified in the DMD is successfully registered with the DomainManager (via
register DeviceManager or register Service operations), the DomainManager shall begin to use
the service (e.g. Log).

The DomainManager shall create its own FileManager component that consists of all registered
DeviceManager’s FileSystems.

The DomainManager shall restore ApplicationFactories after startup for applications that were
previously installed by the DomainManager install Application operation. The DomainManager
shall add the restored ApplicationFactories to the DomainManager’ s applicationFactories
attribute.

3.1.3.2.3.6 Operations.
3.1.3.2.3.6.1 registerDeviceManager.
3.13.236.1.1 Brief Rationae.

The registerDeviceManager operation is used to register a DeviceManager, its Device(s), and its
Services. Software profiles can aso be obtained from the DeviceManager's FileSystem.

3.1.3.236.1.2 Synopsis.

voi d regi sterDevi ceManager (i n Devi ceManager devi ceMyr) rai ses
(I'nval i dOoj ect Reference, InvalidProfile);

3.1.3.2.36.1.3 Behavior.

The registerDeviceManager operation verifies that the input parameter, deviceMgr, isanot anil
CORBA component reference.

The registerDeviceManager operation shall add the input deviceMgr to the DomainManager’s
deviceManagers attribute, if it does not already exist. The registerDeviceManager operation
shall add the input deviceMgr’ s registeredDevices and each registeredDevice' s attributes (e.g.,
identifier, softwareProfile' s allocation properties, etc.) to the DomainManager. The

register DeviceManager operation associates the input deviceMgr’ s with the input deviceMgr’'s
registeredDevices in the DomainManager in order to support the unregister DeviceManager
operation.

The register DeviceManager operation shall add the input deviceMgr’ s registeredServices and
each registeredService' s names to the DomainManager. The register DeviceManager operation
associates the input deviceM gr’ s with the input deviceMgr’ s registeredServicesin the
DomainManager in order to support the unregister DeviceManager operation.

3-43

MSRC-5000SCA
rev. 2.1

The registerDeviceManager operation shall perform the documented connections as specified in
the connections element of the deviceMgr’'s DCD file. For connections established for aLog,
the register DeviceManager operation shall create a unique producer log ID for each log
producer. The registerDeviceManager operation shall invoke the PropertySet configure
operation once, and only once, on each log producer in order to set its unique
PRODUCER_LOG_ID (seesection 3.1.3.3.5.5.1.2 for details). If the DeviceManager’s DCD
describes a connection for a service that has not been registered with the DomainManager, the
register DeviceManager operation shall establish any pending connection when the service
registers with the DomainManager by the register DeviceManager operation.

The registerDeviceManager operation shall obtain all the Software profiles from the registering
DeviceManager's FileSystems.

The registerDeviceManager operation shall mount the DeviceManager’s FileSystem to the
DomainManager’s FileManager. The mounted FileSystem name shall have the format,
“/DomainName/HostName”, where DomainName is the name of the domain and HostName is
the input deviceMgr’s label attribute.

The registerDeviceManager operation shall, upon unsuccessful DeviceManager registration,
writeaFAILURE_ALARM log record to a DomainManager’s Log.

The following UML sequence diagram (Figure 3-16) illustrates the DomainManager’ s behavior
for the registerDeviceManager operation.

: DeviceManager ‘ ‘

: DomainM anager

‘ ‘ : Device ‘ ‘

XML SPD : Port
Parser

€

1: registerDeviceManager(in DeviceVLanager) ‘ ‘ ‘

3: getFileSys
|

fileSys & log
readonly attributes

[
5: getLog

6: getRegisteredDevices

readonly
registered Devices
attribute

7: getDeviceConfigurationProfile

readonly
deviceConfigurationProfile
attribute, neded for

Devices' connections

9: getRegisteredSenvices

readonly
registeredSenices
attribute, add to
domain senvices

Steps 17 thru 21 are
optional, provided the
DeviceManager is using a
Seniice and the Sewice
exists in the Domain.

17: getPort(in string)

20: configure(in Properties)

—]

2: add DeviceManager to DrmainManager ‘ ‘

4: mount DeviceManagers|FileSystem to Domaimlanagers FileManagLr
< | |

Steps 10 thru 16 needs to be repeated for each

Device regiitered with the DeviceMstnager. steps 12 ‘
thru 16 are optional, provided the Device is using a
Senice an%me Senvice exists in 1}1{ Domain. ‘

Devices that were previously registegred that are
waiting for $enices are also connedted to serices
that come into existence during a DeviceManager
registraﬂonr

Device's reaTonly attributes (idemiﬁar, ‘

softwareProfle, etc.) This step is repeated
for each attribute.

8: get atrm{es ‘ ‘

‘ This step is optio%val provided ‘

the XML has not ¢hanged and
has already beenlparsed.

o |

10: Parse and get device pmpéies (e.g., allocation)

11: add DeviceManager's lgisteredDevice to DoﬁnManager ‘
[p=—

16: connectPort(in Object, in strin}g) ‘

I I 7]

18: Narrow to Port Interfa# ‘ ‘
—

12: getPort(in string)

13: Narrow to Port Interfac

14: Obtaina Senvice (e.g., Log) from Domain
[p=—

1L5: configure(in Properties)

19: Obtain a Senice (e.g.
[p=—

Log) from Domain ‘ ‘

21: connJctPon(in Object, in strinL) ‘

22: eriteRecords(in ProduceJLogRecordSeque;lﬁ)
T T

MSRC-5000SCA
rev. 2.1

Figure 3-16. DomainManager Sequence Diagram for registerDeviceManager Oper ation

3-45

MSRC-5000SCA
rev. 2.1

3.1323.6.14 Returns.
This operation does not return avalue.

3.1.3.23.6.15 ExceptiongErrors.

The registerDeviceManager operation shall raise the CF InvalidObjectReference exception when
the input parameter deviceMgr contains an invalid reference to a DeviceManager interface.

3.1.3.2.3.6.2 registerDevice.
3.1.3.2.36.2.1 Brief Rationae.

The registerDevice operation is used to register a Device for a specific DeviceManager in the
DomainManager's Domain Profile.

31323622 Synopss

voi d regi sterDevice(in Device registeringDevice, in DeviceManager
regi st eredDevi ceMgr) raises (lnvalidObjectReference, InvalidProfile,
Devi ceManager Not Regi stered);

3.1.3.23.6.2.3 Behavior.

The register Device operation verifies that the input parameters, registeringDevice and
registeredDeviceMgr, are not nil CORBA component references.

The register Device operation shall add the registeringDevice and the registeringDevice' s
atributes (e.g., identifier, softwareProfile’ s allocation properties, etc.) to the DomainManager, if
it does not already exist.

The register Device operation associates the input registeringDevice with the input
registeredDeviceMgr in the DomainManager when the input registeredDeviceMgr isavalid
registered DeviceManager in the DomainManager .

The register Device operation shall, upon successful device registration, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log, to indicate that the device
has successfully registered with the DomainManager .

Upon unsuccessful device registration, the register Device operation shall write a
FAILURE_ALARM log record to a DomainManager’s Log, when the InvalidProfile exception
israised to indicate that the registeringDevice has an invalid profile.

Upon unsuccessful device registration, the register Device operation shall write a
FAILURE_ALARM log record to a DomainManager’s Log, indicating that the device could not
register because the DeviceManager is not registered with the DomainManager .

Upon unsuccessful device registration, the register Device operation shall write a
FAILURE_ALARM log record to a DomainManager’ s Log, because of an invalid reference
input parameter.

The following UML sequence diagram (Figure 3-17) illustrates the DomainManager's behavior
for the register Device operation.

3-46

MSRC-5000SCA
rev. 2.1

: DeviceManager ‘

‘ : DomainManager

Device Parser

registeringDevice : ‘ XML SPD H

e

1: registerDevice(in Device, in DeLviceManager)

6: getDeviceConfigurationProfile

2: get atqbutes

sofwtareProfile, etc.) This step is repeated
for each attribute.

Device's readonly attributes (identifier, ﬁ

3: Parse and get device proLerlies (e.g., allocation)

This step is op{ional provided
the XML has not changed and
has already be}n parsed.

4: associate registeringdevice with
registeredDevice Manager in DomainM anager

=1

I5: add registeringDevice to DoLainManager
‘

|
|
|
F
|
|

7: Narrow to Port Interface provi

8: Obtain Senvice (e.g., Log) from Domain

=1

ed the registeringlPevice
is using a Senice and the
Senice exists in the Domain.

Steps 7 thru 10 are opti[EnaI,

9: configure(in Properties) |

10: connectPort(in Object, in string)

11: writeRecords(in ProducerLo

/LH

RecordSequence)

Figure 3-17. DomainManager Sequence Diagram for registerDevice Operation

31323624

Returns.

This operation does not return avalue.

3.1.3.2.3.6.25

The registerDevice operation shall raise the CF InvalidProfile exception when:

Exceptiong/Errors.

1. TheDevice's SPD file and the SPD’ s referenced files do not exist or cannot be processed due
to the file not being compliant with XML syntax, or

2. TheDevice's SPD does not reference allocation properties.

The register Device operation shall raise a DeviceM anagerNotRegistered exception when the

input registeredDeviceMgr (not nil reference) is not registered with the DomainManager.

The registerDevice operation shall raise the CF InvalidObjectReference exception when input
parameters registeringDevice or registeredDeviceMgr contains an invalid reference.”

3-47

MSRC-5000SCA
rev. 2.1

3.1.3.2.3.6.3 installApplication.
3.1.3.236.3.1 Brief Rationale.

The install Application operation is used to install new application softwarein the
DomainManager's Domain Profile. Aninstaller application typically invokes this operation
when it has completed the installation of a new application into the domain.

3.1.3.236.32 Synopsis.

void install Application(in string profileFileNane) raises (InvalidProfile,
I nval i dFi | eNane, ApplicationlnstallationError);

3.1.3.2.3.6.3.3 Behavior.
The profileFileName is the absol ute path of the profile filename.

The install Application operation shall verify the application’s SAD file existsin the
DomainManager’s FileManager and all the files the application is dependent on are alsoresident.

The install Application operation shall write an ADMINISTRATIVE_EVENT log recordto a
DomainManager’s Log, upon successful Application installation.

The install Application operation shall, upon unsuccessful application installation, write a
FAILURE_ALARM log record to a DomainManager’s Log.

31323634 Returns.
This operation does not return avalue.

3.1.3.23.6.35 ExceptiongErrors.

The install Application operation shall raise the ApplicationlnstallationError exception when the
installation of the Application file(s) was not successfully completed.

The install Application operation shall raise the CF InvalidFileName exception when the input
SAD file or any referenced file name does not exist in the file system as defined in the absolute
path of the input profileFileName. When the CF InvalidFileName exception occurs, the

install Application operation shall log a FAILURE_ALARM log record to a DomainManager’s
Log with amessage consisting of “install Application::invalid fileis xxx”, where “xxx” isthe
input or referenced file name that is bad.

The install Application operation shall raise the CF InvalidProfile exception when the input SAD
file or any referenced file is not compliant with XML DTDs defined in Appendix D or
referenced property definitions are missing. When the CF InvalidProfile exception occurs, the
install Application operation shall log a FAILURE_ALARM log record to a DomainManager’s
Log with amessage consisting of “install Application::invalid Profileisyyy,” where“yyy” isthe
input or referenced file name that is bad aong with the element or position within the profile that
is bad.

3.1.3.2.3.6.4 unregisterDeviceManager.
31323641 Brief Rationae.

The unregister DeviceManager operation is used to unregister a DeviceManager component from
the DomainManager’s Domain Profile. A DeviceManager may be unregistered during run-time
for dynamic extraction or maintenance of the DeviceManager.

3-48

MSRC-5000SCA
rev. 2.1

3.1.3236.4.2 Synopsis.

voi d unregi st er Devi ceManager (i n Devi ceManager devi ceMgr) rai ses
(I'nval i dOnj ect Ref er ence) ;

3.1.3.2.3.6.4.3 Behavior.

The unregisterDeviceManager operation shall unregister a DeviceManager component from the
DomainManager.

The unregisterDeviceManager operation shall release all device(s) and service(s) associated with
the DeviceManager that is being unregistered.

The unregisterDeviceManager operation shall unmount all DeviceManager’ s FileSystems from
its File Manager.

The unregisterDeviceManager operation shall, upon the successful unregistration of a
DeviceManager, write an ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The unregisterDeviceManager operation shall, upon unsuccessful unregistration of a
DeviceManager, write a FAILURE_ALARM log record to a DomainManager’s Log.

3.1.3.2.3.644 Returns.
This operation does not return avalue.

3.1.3236.45 ExceptiongErrors.

The unregisterDeviceManager operation shall raise the CF InvalidObjectReference when the
input parameter DeviceManager contains an invalid reference to a DeviceManager interface.

3.1.3.2.3.6.5 unregisterDevice.
3.1.3.23.651 Brief Rationae.

The unregister Device operation is used to remove a device entry from the DomainManager for a
specific DeviceManager .

3.1.3.236.52 Synopsis.

voi d unregi sterDevice(in Device unregisteringDevice) raises
(I'nval i dOnj ect Ref er ence)

3.1.3.2.3.6.5.3 Behavior.
The unregister Device operation shall remove a device entry from the DomainManager.

The unregister Device operation shall release (client-side CORBA release) the
unregisteringDevice from the Domain Manager.

The unregister Device operation shall, upon the successful unregistration of a Device, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The unregister Device operation shall, upon unsuccessful unregistration of a Device, write a
FAILURE_ALARM log record to a DomainManager’s Log.

3.13.23.654 Returns.
This operation does not return avalue.

3-49

MSRC-5000SCA
rev. 2.1

3.1.3.2.36.55 ExceptiongErrors.

The unregister Device operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Device interface.

3.1.3.2.3.6.6 uninstall Application.

3.1.3.23.6.6.1 Brief Rationae.

The uninstall Application operation is used to uninstall an ApplicationFactory in the
DomainManager’s Domain Profile.

An installer application typically invokes this operation when removing an ApplicationFactory
from the domain.

3.1.3.236.6.2 Synopsis.

void uninstall Application(in String ApplicationlDyraises (Invalidldentifier);

3.1.3.2.3.6.6.3 Behavior.
The uninstall Application operation shall remove al files associated with the Application.

The uninstall Application operation shall make the ApplicationFactory unavailable from the
DomainManager (i.e. itsservices no longer provided for the Application).

The uninstall Application operation shall, upon successful uninstall of an Application, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The uninstall Application operation shall, upon unsuccessful uninstall of an Application, write a
FAILURE_ALARM log record to a DomainManager’s Log.

The uninstall Application operation shall, upon unsuccessful uninstall of an Application, log a
FAILURE_ALARM log record to aDomainManager’s Log.

31323664 Returns.

This operation does not return avalue.

3.1.3.2.3.6.6.5 ExceptiongErrors.

The uninstall Application operation shall raise the Invalididentifier exception when the
ApplicationID isinvalid.

3.1.3.2.3.6.7 registerService.

3.1.3.236.7.1 Brief Rationale.

The register Service operation is used to register a service for a specific DeviceManager with the
DomainManager.

3.1.3.236.7.2 Synopsis.

voi d regi sterService(in Object registeringService, in DeviceManager
regi steredDevi ceMgr, in string nane) raises (lnvalidObjectReference,
Devi ceManager Not Regi st ered) ;

3.1.3.23.6.7.3 Behavior.

The register Service operation shall verify the input registeringService and registeredDeviceM gr
are valid object references.

3-50

MSRC-5000SCA
rev. 2.1

The register Service operation shall verify the input registeredDeviceMgr has been previously
registered with the DomainManager .

The register Service operation shall add the registeringService and the registeringService' s name
to the DomainManager if the name of the registering service is a unique name. However, if the
name of the registering serviceis not a unique name for that type of service (i.e. it isaduplicate
name of an already registered service of the same type of service), then the new service shall not
be registered by the DomainManager .

The register Service operation shall associate the input registeringService with the input
registeredDeviceMgr in the DomainManager when the input registeredDeviceMgr isavalid
registered DeviceManager in the DomainManager .

The register Service operation shall, upon successful service registration, establish any pending
connection requests for the registeringService. For connections established for aLog, the
register Service operation shall create a unique producer log ID for each log producer. The
registerService operation shall invoke the PropertySet configure operation once, and only once,
on each log producer in order to set its unique PRODUCER_LOG ID (see section 3.1.3.3.5.5.1.2
for details).

The register Service operation shall, upon successful service registration, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The register Service operation shall, upon unsuccessful service registration, write a
FAILURE_ALARM log record to aDomainManager’s Log.

The following UML sequence diagram (Figure 3-18) illustrates the DomainManager's behavior
for the register Service operation.

3-51

MSRC-5000SCA
rev. 2.1

: DeviceManager : DomainManager : Device XML SPD : Port : Log
Parser

L

1: registerDeviceManager(in DeviceManager)

2: add DeviceManager to DgmainManager

p—

3: getFileSys
|

fileSys & log
readonly attributes

4: mount DeviceManager's [rileSystem to DomainManager's FileManager
[P=—

Steps 10 thru 16 needs to be repeated for each
5: ‘ Device registered with the DeviceManager. steps 12
: getLog . 5 o .

thru 16 are optional, provided the Device is using a
Service and|the Service exists in the Domain.
Devices that were previously registered that are
waiting for Services are also connected to services
that come into existence during a DeviceManager
registration.

6: getRegisteredDevices

readonly
registeredDevices
attribute

Device's readonly attributes (identifier,
softwareProfile, etc.) This step is repeated

7: getDeviceConfigurationProfile for each attribute.

8: get attributes

readonly
deviceConfigurationProfile
attribute, neded for

Devices' connections

1

This step is optional provided
the XML has not changed and
has already been parsed.

9: getRegisteredServices

10: Parse and get device properties (e.g., allocation)

T

11: add DeviceManager's registeredDevice to DomainManager

readonly
registeredServices
attribute, add to
domain services

12: getPort(in string)

13: Narrow to Port Interface
[=—

Steps 17 thru 21 are

optional, provided the 14: Obtain a Service (e.g., Log) from Domain
DeviceManager is using a =a—

Service and the Service

exists in the Domain. 1L5: configure(in Properties)

16: connectPort(in Object, in string)
17: getPort u

18: Narrow to Port Interface

19: Obtain a Service (e.g., Log) from Domain
[P=a—
20: configure

21: connectPort(in Object, in string)

U

22: |logData(in string, in string, in unsigned short)

Figure 3-18. DomainManager Sequence Diagram for register Service Operation

3-52

MSRC-5000SCA
rev. 2.1

3.13.23.6.7.4 Returns.
This operation does not return avalue.

3.1.3.23.6.7.5 ExceptiongErrors.
The register Service operation shall raise a DeviceM anagerNotRegistered exception when the
input registeredDeviceMgr (not nil reference) is not registered with the DomainManager.

The register Service operation shall raise the CF InvalidObjectReference exception when input
parameters registeringService or registeredDeviceMgr contains an invalid reference.
3.1.3.2.3.6.8 unregisterService.

3.1.3.23.6.8.1 Brief Rationale.

The unregister Service operation is used to remove a service entry from the DomainManager for
a specific DeviceManager.

3.1.3.2.3.6.82 Synopsis.

voi d unregi sterService(in Cbject unregisteringService, in string nanme) raises
(I'nvalidObject Reference);

3.1.3.2.3.6.83 Behavior.
The unregister Service operation shall remove a service entry from the DomainManager.

The unregister Service operation shall release (client-side CORBA release) the
unregisteringService from the DomainManager .

The unregister Service operation shall, upon the successful unregistration of a Service, write an
ADMINISTRATIVE_EVENT log record to a DomainManager’s Log.

The unregister Service operation shall, upon unsuccessful unregistration of a Service, write a
FAILURE_ALARM log record to a DomainManager’s Log.

3.1.3.2.3.6.84 Returns.

This operation does not return avalue.

3.1.3236.85 ExceptiongErrors.

The unregister Service operation shall raise the CF InvalidObjectReference exception when the
input parameter contains an invalid reference to a Service interface.

3.1.3.2.4 Device.
3.1.3.2.4.1 Description.

A Deviceisatype of Resource within the domain and has the requirements as stated in the
Resourceinterface. Thisinterface defines additional capabilities and attributes for any logical
Deviceinthedomain. A logical Deviceisafunctiona abstraction for a set (e.g., zero or more)
of hardware devices and provides the following attributes and operations.

1. Software Profile Attribute — This SPD XML profile defines the logical Device
capabilities (data/command uses and provides ports, configure and query properties,
capacity properties, status properties, etc.), which could be a subset of the hardware
device's capabilities.

2. State Management & Status Attributes — This information describes the administrative,
usage, and operational states of the device.

3-53

MSRC-5000SCA
rev. 2.1

3. Capacity Operations - In order to use a device, certain capacities (e.g., memory,
performance, etc.) must be obtained from the Device. The capacity properties will vary
among devices and are described in the Software Profile. A device may have multiple
allocatable capacities, each having its own unique capacity model.

3.1.3.24.2 UML.
The Device Interface UML is depicted in figure 3-18.

<<Interface>>
Resource

<<Interface>>
Device

wusageState : UsageType
wadminState : AdminType
woperationalState : OperationalType
widentifier : string

wsoftwareProfile : string

wabel : string

wcompositeDevice : AggregateDevice

®allocateCapacity(capacities : in Properties) : boolean
®deallocateCapacity(capacities : in Properties) : woid

/
/ uses \

Vv N
<<CORBATypedef>> <<Interface>>
Properties AggregateDevice

Figure 3-19. Device Interface UML

3.1.3.24.3 Types.
3.1.3.24.31 InvaidState.

The InvalidState exception indicates that the device is not capable of the behavior being
attempted due to the state the Device isin. An example of such behavior is allocateCapacity.

3-54

MSRC-5000SCA
rev. 2.1

exception Devi ceNot Capabl e InvalidState {string nsg;};

3.1.3.2.4.3.2 InvalidCapacity.
The InvalidCapacity exception returns the capacities that are not valid for this device.

exception InvalidCapacity

{
string neg;
Properties capacities;
1
3.1.3.24.3.3 AdminType.

Thisisa CORBA IDL enumeration type that defines a Device's administrative states. The
administrative state indicates the permission to use or prohibition against using the Device.

enum Adm nType

LOCKED,
SHUTTI NG_DOWWN,
UNLOCKED

i
3.1.3.2.4.3.4 Operational Type.

Thisisa CORBA IDL enumeration type that defines a Device's operational states. The
operational state indicates whether or not the object is functioning.

enum Qper ati onal Type

ENABLED,
DI SABLED

};

3.1.3.24.3.5 UsageType.

Thisisa CORBA IDL enumeration type that defines the Devices usage states. This state
indicates whether or not aDeviceis:

* IDLE-notinuse
* ACTIVE-inuse, with capacity remaining for allocation, or
* BUSY —inuse, with no capacity remaining for allocation

enum UsageType
{

| DLE,
ACTI VE,
BUSY

};

3-55

MSRC-5000SCA
rev. 2.1

3.1.3.24.4 Attributes.
3.1.3.24.4.1 usageState.
The readonly usageState attribute shall contain the Device's usage state (IDLE, ACTIVE, or

BUSY, see Figure 3-21). UsageState indicates whether or not adeviceisactively inuse at a
specific instant, and if so, whether or not it has spare capacity for allocation at that instant.

readonly attribute UsageType usageSt at e;

3.1.3.24.42 adminState.

The administrative state indicates the permission to use or prohibition against using the device.
The adminState attribute shall contain the device's admin state value. The adminState attribute
shall only allow the setting of LOCKED and UNLOCKED values, where “LOCKED” isonly
effective when the adminState attribute value is UNLOCKED, and “UNLOCKED” isonly
effective when the adminState attribute value is LOCKED or SHUTTING_DOWN. lllegal state
transitions commands are ignored.

The adminState attribute, upon being commanded to be LOCKED, shall transition from the
UNLOCKED to the SHUTTING_DOWN state and set the adminState to LOCKED for its entire
aggregation of Devices (if it has any). The adminState shall then transition to the LOCKED state
when the Device' s usageState is IDLE and its entire aggregation of Devices are LOCKED. Refer
to Figure 3-19 for an illustration of the above state behavior.

attribute Adnmi nType admi nStat e;

upon startup

UNLOCKED

adminState(
LOCKED) adminState(UNLOCKED)

SHUTTING_DOWN
adminState(

UNLOCKED)

Usage State = IDLE and
its devices' adminState =
LOCKED

[LOCKED }

Figure 3-20. State Transition Diagram for adminState

3-56

MSRC-5000SCA
rev. 2.1

3.1.3.2.4.4.3 operationa State.

The readonly operational State attribute shall contain the device' s operational state (ENABLED
or DISABLED). The operational state indicates whether or not the device is functioning.

readonly attribute Qperational Type operational State;

3.1.3.24.4.4 identifier.
The readonly identifier attribute shall contain the unique identifier for a device instance.

readonly attribute string identifier;

3.1.3.24.45 softwareProfile.
The softwareProfile attribute is the XML software description for thislogical Device.
The readonly softwareProfile attribute shall contain either aprofile DTD element with afile

reference to the SPD profile file or the XML for the SPD profile. Files referenced within the
softwareProfile are obtained viathe FileManager.

readonly attribute string softwareProfile;

3.1.3.24.46 label.

The readonly label attribute shall contain the Device' slabel. Thelabel attribute isthe
meaningful name given to aDevice. The attribute could convey location information within the
system (e.g., audiol, seriall, etc.).

readonly attribute string | abel;

3.1.3.24.4.7 compositeDevice.

The readonly compositeDevice attribute shall contain the object reference of the
aggregateDevice which this Device is associated with or anil CORBA aobject referenceif no
association exists.

readonly attribute AggregateDevice conpositeDevice;

3.1.3.2.4.5 Operations.

3.1.3.24.5.1 allocateCapacity.

3.132451.1 Brief Rationale.

The allocateCapacity operation provides the mechanism to request and allocate capacity from
the Device.

3.132451.2 Synopsis.

bool ean al | ocateCapacity(in Properties capacities) raises (InvalidCapacity,
InvalidState);
31324513 Behavior.

The allocateCapacity operation shall reduce the current capacities of the Device based upon the
capacities requested, when the adminState is UNLOCKED, operational State is ENABLED, and
usageState is not BUSY .

3-57

MSRC-5000SCA
rev. 2.1

The allocateCapacity operation shall set the Device' s usageState attribute to BUSY, when the
Device determines that it is not possible to allocate any further capacity. The allocateCapacity
operation shall set the usageState attribute to ACTIVE, when capacity is being used and any
capacity is still available for alocation (reference Figure 3-21).

31324514 Returns.

The allocateCapacity operation shall return true, if the capacity has been allocated, or falseif not
allocated.

31324515 ExceptiongErrors.

The allocateCapacity operation shall raise the InvalidCapacity exception, when the capacities are
invalid or the capacity values are the wrong type or ID.

The allocateCapacity operation shall raise the InvalidState exception, when the Device's
adminState is not UNLOCKED or operational State is DISABLED.

3.1.3.2.4.5.2 deallocateCapacity.

3.1.3.24521 Brief Rationale.

The deallocateCapacity operation provides the mechanism to return capacities back to the
Device, making them available to other users.

31324522 Synopsis.

voi d deal | ocateCapacity(in Properties capacities) raises (InvalidCapacity,
InvalidState);

3.1.3.245.23 Behavior.

The deall ocateCapacity operation shall adjust the current capacities of the Device based upon the
input capacities parameter.

The deallocateCapacity operation shall set the usageState attribute to ACTIVE when, after
adjusting capacities, any of the Device's capacities are till being used.

The deallocateCapacity operation shall set the usageState attribute to IDLE when, after adjusting
capacities, none of the Device' s capacities are still being used.

The deallocateCapacity operation shall set the adminState attribute to LOCKED as specified in
3.1.3.24.4.2.

3-58

all capacities
are unused

upon startup
IDLE

all capacities
are unused

capacities in
use and
available

)

capacities in use
and available

ACTIVE

no more capacities
can be allocated

)

MSRC-5000SCA
rev. 2.1

no more
capacities can
be allocated

Figure 3-21. State Transition Diagram for allocateCapacity and deall ocateCapacity

31324524
This operation

3.1.3.24.525

Returns.
does not return any value.

Exceptiong/Errors.

The deallocateCapacity operation shall raise the InvalidCapacity exception, when the capacity
ID isinvalid or the capacity value isthe wrong type. The InvalidCapacity exception will state
the reason for the exception.

The deallocateCapacity operation shall raise the InvalidState exception, when the Device's
adminState is LOCKED or operational State is DISABLED.

3132453
31324531

This section describes additional release behavior for alogical Device.

3.1.3.24.532

releaseObject.
Description.

Synopsis.

void rel ease(bject() raises (ReleaseError);

31324533

Behavior.

The following behavior isin addition to the LifeCycle releaseObject operation behavior.

The releaseObject operation shall call the releaseObject operation on al of the Device's
aggregated Devices (i.e., those Devices that are contained within the AggregateDevice' s devices

attribute).

3-59

MSRC-5000SCA
rev. 2.1

The releaseObject operation shall transition the Device' s adminState to SHUTTING_DOWN
state, when the Device' s adminState is UNLOCKED.

The releaseObject operation shall cause the Device to be unavailable (i.e. released from the
CORBA environment, and process terminated on the OS when applicable), when the Device's
adminState transitions to LOCKED, meaning its aggregated Devices have been removed and the
Device susageState is IDLE.

The releaseObject operation shall cause the removal of its Device from the Device's
compositeDevice.

The releaseObject operation shall unregister its Device from its DeviceManager .

The following four figures (3-22, 3-23, 3-24, and 3-25) depict different release scenarios
depending on the type of Device and the state the Deviceisin.

- Comm User Adgregated Device Agaregated Device |Composite Device : - - CORBA ORB Operating
— : Device Process/Thread AgaregateDevice DeviceManager | | DomainManager System

L .
IL: releaseObject()

2: remoweDevice(in Device)

3: unrjegisterDevice(in De/\nl'ge)

5: deacti\rc‘ue Device senant obcht from ORB

4: unregisterDewvice(in Device)

| |
\ \ \
‘ / After the deactivation of the Device Servant from ﬁ

the ORB, the process/thread can be terminated.

T ‘ / ‘ 6: terminate DevicL thread/process ﬁ’Lm os
1

T T

1 1
‘ For this scenario, the aggregated Device's 7 ‘ ‘

S

adminState equals LOCKED and the Device has
been requested to terminate. How a Devce
indicates to its thread/process to terminate is
implementation specific.

Figure 3-22. Release Aggregated Device Scenario

3-60

MSRC-5000SCA
rev. 2.1

Comm User Composite Device | Adgregated. Composite Device || Adgaregated Device (|Released Composite Device - CORBA ORB Operating
—_— : Device Device : Device Process/Thread Processes/Threads AdgregateDevice DeviceManager || DomainManager System

L
1: releaseObject() ‘

2: releaseObject(

3: remoweDevice(in Device)

Step 2 is done for each ‘ 4: unregisterDevice(in Device) /IT‘ unregisterDevige(in Device)
Hosted On Device ' '

‘ 6: dLaclwale the Device senant| object from the ORB

T T T T T T‘_I
|
|

7: terminate Deyice thread/process fom 0S |

7]

/ 8: umregisterDepice(in Device) : unregisterDevige (n Device)

deactivate the Device servant object from the ORB|

I

/

How aDevice informs its process to

tefminate is implementation specifc. ﬁ
=

10:
—

1m|mzeowc\emread/pmc+ss from OS ‘

T For this scenario, all Devices' ™ H | | |

=

adminState equals LOCKED.

Figure 3-23. Release Composite Device Scenario

Comm User | Composite & Aggregated Agaregated Composite & Agaregated || Aggregated Device || Released Composite & Aqgregated | | Composite Device 5 - CORBA ORB Operating
~ommUser Device ; Device Devices : Device | | Deuice Process/Thread || Processes/Threads Device teD teDevi DomainManager System

o
1: releaseObject()

2: releaseObject() ‘ UL
I 3: remoleDevice(in Device)

Step 2 is done for each
Hosted On Device
4: unregisteevice(n Device) ‘ 5: unregisterDevige(in Device)

6: deactiate Dev le senant object fom ORB

i
7: terminate Device thread/process from OS

I I I I gl

=}

| |o: emoveevieqin peved |
| | 10: unregistdvevcein Devce) | | 11: uregisterpendeqn Device)

‘ ‘ ‘ ‘ 12: deactivate ‘Dewce senant object "mm ORB ‘ ‘

Device)

L [Forthis scenario, all Devices™ ‘ ‘ ‘ 13: terminate Device threadiprocess from OS. ‘ LH

U adminState equals LOCKED.
How a Devce informs its process to 1
terminate is implementation specific.

Figure 3-24. Release Composite & Aggregated Device Scenario

3-61

MSRC-5000SCA
rev. 2.1

X

: Comm User

Aggregated
Device : Device

Composite Device
: Device

1: releaseObject() ‘ ‘

2: releaseObject() ‘

N ‘

\ ki
AN

N |

| N |

AN |

|
In this scenario, no device processes are terminated or device
objects deactivated from the ORB since the Devices'
adminState equals SHUTTING_DOWN. A Dewvice is in
SHUTTING_DOWN state when the usageState is not IDLE.

Figure 3-25. Release Composite Devicein SHUTTING_DOWN State Scenario

31324534 Returns.
The releaseObject operation does not return a value.

3.1.324535 ExceptiongErrors.

The releaseObject operation shall raise the ReleaseError exception when the releaseObject is not
successful in releasing alogical Device due to internal processing errors that occurred within the

Device being released.

3.1.3.2.5 LoadableDevice.

3.1.3.25.1 Description.

This interface extends the Device interface by adding software |oading and unloading behavior to
aDevice.

3.1.3.252 UML.

The LoadableDevice Interface UML is depicted in Figure 3-26 below.

3-62

<<|nterface>>
Device

gusageState : UsageType
gadminState : AdminType
goperationalState : OperationalType
gAadentifier : string
gsoftwareProfile : string

glabel : string

wcompositeDevice : AggregateDevice

®allocateCapacity()
|deallocateCapacity()

MSRC-5000SCA
rev. 2.1

<<Interface>>
LoadableDevice

®oad(fs : in FileSystem, fileName : in string, loadKind : in LoadType) : wid
®unload(fileName : in string) : woid

/
/

<<CORBAEXxception>>
InvalidFileName

\

<<Interface>>
FileSystem

Figure 3-26. LoadableDevice Interface UML

3.1.3.25.3 Types.
3.1.3.253.1 LoadType.

This type defines the type of load to be performed. The load types are in accordance with

Appendix D.

enum LoadType

KERNEL_MODULE,
DRI VER,
SHARED_LI| BRARY,
EXECUTABLE

3-63

MSRC-5000SCA
rev. 2.1

3.1.3.25.3.2 InvaidLoadKind.

The InvalidL oadKind exception indicates that the device is unable to load that type of file, as
identified by the loadKind parameter.

exception InvalidLoadKind {};

3.1.3.25.4 Attributes.

N/A

3.1.3.25.5 Operations.
3.1.3.2551 load.
3.1.3.2551.1 Brief Rationale.

The load operation provides the mechanism for loading software on a specific device. The
loaded software may be subsequently executed on the Device, if the Deviceisan
ExecutableDevice.

3.132551.2 Synopsis.

void load(in FileSystemfs, in string fileNane, in LoadType | oadKi nd)
raises (lnvalidState, InvalidLoadKind, InvalidFileNane);

31325513 Behavior.

The load operation shall load afile on the specified device based upon the input loadKind and
fileName parameters using the input FileSystem parameter to retrieve thefile.

The load operation shall support the load types as stated in the Device' s software profile
LoadType allocation properties.

The load operation shall keep track of the number of times afile has been successfully |oaded.

31325514 Returns.
This operation does not return any value.

3.1.325515 ExceptiongErrors.

The load operation shall raise the InvalidState exception when the Device' s adminState is not
UNLOCKED or operationa State is DISABLED.

The load operation shall raise the InvalidLoadKind exception when the input loadKind parameter
IS not supported.

The load operation shall raise the CF InvalidFileName exception when the file designated by the
input filename parameter cannot be found.

3.1.3.25.5.2 unload.
31325521 Brief Rationae.
The unload operation provides the mechanism to unload software that is currently loaded.

3.1.3.25522 Synopsis.
void unload(in string fileNane) raises (InvalidState, InvalidFileNanme);

3-64

MSRC-5000SCA
rev. 2.1

31325523 Behavior.

The unload operation shall decrement the load count for the input filename parameter by one.
The unload operation shall unload the application software on the device based on the input
fileName parameter, when the file' sload count equals zero.

31325524 Returns.

This operation does not return avalue.

3.1.325525 ExceptiongErrors.

The unload operation shall raise the InvalidState exception when the Device' s adminState is
LOCKED or its operational State is DISABLED.

The unload operation shall raise the CF InvalidFileName exception when the file designated by
the input filename parameter cannot be found.

3.1.3.2.6 ExecutableDevice.

3.1.3.2.6.1 Description.

Thisinterface extends the LoadableDevice interface by adding execute and terminate behavior to
aDevice.

3.1.3.2.6.2 UML.

The ExecutableDevice Interface UML is depicted in Figure 3-27.

<<Interface>>
LoadableDevice

oad()
=unload()

<<lInterface>>
ExecutableDevice

et erminate(processld : in ProcessID_Type) : void
execute(name : in string, options : in Properties, parameters : in Properties) : ProcessID_Type

A N

<<CORBATypedef>> <<CORBAException>>
Properties InvalidFileName
Efimsg : string

Figure 3-27. ExecutableDevice Interface UM L

3-65

MSRC-5000SCA
rev. 2.1

3.1.3.2.6.3 Types.
3.1.3.2.6.3.1 InvalidProcess.

The InvalidProcess exception indicates that a process, as identified by the processiD parameter,
does not exist on this device.

exception InvalidProcess {};

3.1.3.2.6.3.2 InvaidFunction.

The InvalidFunction exception indicates that a function, as identified by the input name
parameter, hasn’t been loaded on this device.

exception InvalidFunction {};

3.1.3.2.6.3.3 ProcessID_Type.

This type defines a process number within the system. Process number is unique to the
Processor operating system that created the process.

t ypedef unsigned | ong Processl D Type;

3.1.3.2.6.3.4 InvaidParameters.

The InvalidParameters exception indicates the input parameters are invalid on the execute
operation. The InvalidParameters exception is raised when there are invalid execute parameters.
Each parameter's ID and value must be avalid string type. TheinvalidParmsisalist of invalid
parameters specified in the execute operation.

exception InvalidParaneters { Properties invalidParns;};

3.1.3.2.6.3.5 InvalidOptions.

The InvalidOptions exception indicates the input options are invalid on the execute operation.
TheinvalidOptsisalist of invalid options specified in the execute operation.

exception InvalidOptions{ Properties invalidOpts;} ;
3.1.3.26.3.6 STACK_SIZE ID.

The STACK_SIZE 1D istheidentifier for the ExecutableDevice s execute options parameter.
The value for a stack size shall be an unsigned long.

Constant string STACK SIZE_|ID = “STACK_SI ZE";

3.1.3.26.3.7 PRIORITY_ID.

The PRIORITY _ID istheidentifier for the ExecutableDevice' s execute options parameters. The
value for a priority shall be an unsigned long.

Constant string PRIORITY _ID = “PRIORITY”;

3.1.3.2.6.4 Attributes.
N/A.

3-66

MSRC-5000SCA
rev. 2.1

3.1.3.2.6.5 Operations.
3.1.3.2.6.5.1 execute.
3.1326511 Brief Rationde.

The execute operation provides the mechanism for starting up and executing a software
process/thread on adevice.

3.1.3.26.5.1.2 Synopsis.

Processl D Type execute(in string name, in Properties options, in Properties
par anet ers)

raises (lnvalidState, InvalidFunction, InvalidParaneters, |nvalidOptions,
I nval i dFi | eNan®e) ;

3.1.3.26.5.1.3 Behavior.

The execute operation shall execute the function or file identified by the input name parameter
using the input parameters and options parameters. Whether the input name parameter isa
function or afile name is device-implementation-specific.

The execute operation shall convert the input parameters (id/value string pairs) parameter to the
standard argv of the POSIX exec family of functions, where argv(0) is the function name. The
execute operation shall map the input parameters parameter to argv starting at index 1 as follows,
argv (1) maps to input parameters (0) id and argv (2) maps to input parameters (0) value and so
forth. The execute operation passes argv through the operating system “execute” function.

The execute operation input options parameters are STACK_SIZE ID and PRIORITY _ID. The
execute operation shall use these options, when specified, to set the operating system’s
process/thread stack size and priority, for the executable image of the given input name
parameter.

3.1.3.26514 Returns.

The execute operation shall return a unique processiD for the process that it created or a
processiD of minus 1 (-1) when aprocessis not created.

3.1.3.26.5.15 ExceptiongErrors.

The execute operation shall raise the InvalidState exception when the Device' s adminState is not
UNLOCKED or operationa State is DISABLED.

The execute operation shall raise the InvalidFunction exception when the function indicated by
the input name parameter does not exist for the Device.

The execute operation shall raise the CF InvalidFileName exception when the file name
indicated by the input name parameter does not exist for the Device.

The execute operation shall raise the InvalidParameters exception when the input parameters
parameter item ID or value are not string types.

The execute operation shall raise the InvalidOptions exception when the input options parameter
does not comply with sections 3.1.3.2.6.3.5 STACK_SIZE ID and 3.1.3.2.6.3.6
PRIORITY_ID.”

3-67

MSRC-5000SCA
rev. 2.1

3.1.3.26.5.2 terminate.

3.13.26.521 Brief Rationae.

The terminate operation provides the mechanism for terminating the execution of a
process/thread on a specific device that was started up with the execute operation.

3.1.3.26.5.22 Synopsis.

void terminate(in Processl D Type processld) raise (InvalidProcess,
InvalidState);

3.1.3.2.6.5.2.3 Behavior.

The terminate operation shall terminate the execution of the process/thread designated by the
processld input parameter on the Device.

3.1.3.2.6524 Returns.
This operation does not return avalue.

3.1.326.525 ExceptiongErrors.

The terminate operation shall raise the InvalidState exception when the Device' s adminState is
LOCKED or operationa State is DISABLED.

The terminate operation shall raise the InvalidProcess exception when the processld does not
exist for the Device.

3.1.3.2.7 AggregateDevice.

3.1.3.2.7.1 Description.

This interface defines aggregate behavior for a Device that can be used for adding and removing
Devices from the Device. Thisnew interface can be provided viainheritance or as a“provides
port” for any Device that is capable of an aggregate relationship. Aggregated Devices use this
interface to add or remove themselves from composite Devices when being created or torn-down.

3.1.3.2.7.2 UML.
The AggregateDevice Interface UML is depicted in Figure 3-28.

3-68

MSRC-5000SCA

rev. 2.1
<<Interface>>
AggregateDevice

s2denices : DeviceSequence

#WaddDevice(associatedDevice : in Device) : void

®remowe Device(associatedDevice : in Device) : wid

/ | N
/ AN
/ | N
: N\

<<CORBAEXC€ptI0n>> <<|nterface>> <<CORBATypedef>>
InvalidObjectReference Device DeviceSequence

EB¥msg : string

Figure 3-28. AggregateDevice I nterface UML

3.1.3.2.7.3 Types.
N/A.

3.1.3.2.7.4 Attributes.
3.1.3.2.7.4.1 devices.

The readonly devices attribute shall contain alist of devices that have been added to this Device
or a sequence length of zero if the Device has no aggregation rel ationships with other Devices.

readonly attribute DeviceSequence devi ces;

3.1.3.2.7.5 Operations.

3.1.3.2.75.1 addDevice.

3.1327511 Brief Rationae.

The addDevice operation provides the mechanism to associate a Device with another Device.
When a Device changes state or it is being torn down, this affects its associated Devices.

3.132751.2 Synopsis.
voi d addDevi ce(in Device associ atedDevi ce) raises (InvalidObjectReference);

3.1.3.2.75.13 Behavior.

The addDevice operation shall add the input associatedDevice parameter to the
AggregateDevice' s devices attribute when the associatedDevice does not exist in the devices
attribute. The associatedDeviceisignored when duplicated.

The addDevice operation shall writea FAILURE_ALARM log record, upon unsuccessful adding
of an associatedDevice to the AggregateDevice' s devices attribute.

3-69

MSRC-5000SCA
rev. 2.1

31327514 Returns.
This operation does not return any value.

3.1.3.2.7515 ExceptiongErrors.

The addDevice operation shall raise the CF InvalidObjectReference when the input
associatedDeviceis anil CORBA object reference.

3.1.3.2.7.5.2 removeDevice.
3.1.3.27521 Brief Rationde.

The removeDevice operation provides the mechanism to disassociate a Device with another
Device.

31327522 Synopsis.
voi d renoveDevi ce(in Device associ at edDevi ce) raises (InvalidbjectReference

)

31327523 Behavior.

The removeDevice operation shall remove the input associatedDevice parameter from the
AggregateDevice' s devices attribute.

The removeDevice operation shall write a FAILURE_ALARM log record, upon unsuccessful
removal of the associatedDevice from the AggregateDevice' s devices attribute.

31327524 Returns.
This operation does not return any value.

3.1.3.27525 ExceptiongErrors.

The removeDevice operation shall raise the CF InvalidObjectReference when the input
associatedDeviceis anil CORBA object reference or does not exist in the AggregateDevice's
devices attribute.

3.1.3.2.8 DeviceManager.
3.1.3.2.8.1 Description.

The DeviceManager interface is used to manage a set of logical Devices and services. The
interface for a DeviceManager is based upon its attributes, which are:

1. Device Configuration Profile - a mapping of physical device locations to meaningful
labels (e.g., audiol, seriall, etc.), adong with the Devices and services to be deployed.

2. File System - the FileSystem associated with this DeviceManager.

Device Manager Identifier - the instance-unique identifier for this DeviceManager.
Device Manager Label - the meaningful name given to this DeviceManager.
Registered Devices - alist of Devices that have registered with this DeviceManager.

o o & W

Registered Services - alist of Servicesthat have registered with this DeviceManager

3-70

MSRC-5000SCA
rev. 2.1

3.1.3.28.2 UML.

<<Interface>>
PropertySet <<Interface>>
PortSupplier
Fconfigure()
"queryo “getPort()

<<Interface>>
DeviceManager

wdeviceConfigurationProfile : string
wifileSys : FileSystem

widentifier : string

wlabel : string

wregisteredDevices : DeviceSequence
wregisteredSernvices : SeniceSequence

®registerDevice(registeringDevice : in Device) : wid
®unregisterDevice(registeredDevice : in Device) : woid

®shutdown() : void

WregisterSenice(registeringSenice : in Object, name : in string) : void
FunregisterSenice(registeredSenice : in Object, name : in string) : void
#getComponentimplementationld(componentinstantiationd : in string) : string

/
/ ! \ A

<<Interface>> <<CORBATypedef>> <<Interface>> <<CORBAEXxception>>
FileSystem DeviceSequence Device InvalidO bjectReference
Lmsg : string

Figure 3-29. DeviceManager UML

3.1.3.2.8.3 Types.
This section describes the types defined in the interface DeviceManager .

3.1.3.283.1 ServiceType.

This structure provides the object reference and name of servicesthat have registered with the
DeviceManager.
struct ServiceType{

hj ect service(bj ect;
string serviceNane;

};

371

MSRC-5000SCA
rev. 2.1

3.1.3.2.8.3.2 ServiceSequenceType.

This type provides an unbounded sequence of ServiceType structures for services that have
registered with the DeviceManager .

typedef sequence <ServiceType> Servi ceSequence;

3.1.3.2.8.4 Attributes.
3.1.3.2.8.4.1 identifier.

The readonly identifier attribute shall contain the instance-unique identifier for a
DeviceManager.

readonly attribute string identifier

3.1.3.2.84.2 label.

The readonly label attribute shall contain the DeviceManager’slabel. Thelabel attribute isthe
meaningful name given to a DeviceManager.

readonly attribute string | abel

3.1.3.2.84.3 filesys.

The readonly fileSys attribute shall contain the FileSystem associated with this DeviceManager
or anil CORBA object reference if no FileSystemis associated with this DeviceManager.

readonly attribute FileSystemfil eSys;

3.1.3.2.8.4.4 deviceConfigurationProfile.

The readonly deviceConfigurationProfile attribute contains the DeviceManager’ s profile.

The readonly deviceConfigurationProfile attribute shall contain either a profile element with a
file reference to the DeviceManager’ s device configuration (DCD) profile or the XML for the

DeviceManager’s device configuration (DCD) profile. Files referenced within the profile are
obtained from a FileSystem.

readonly attribute string deviceConfigurationProfile;

3.1.3.2.84.5 registeredDevices.

The readonly registeredDevices attribute shall contain alist of Devices that have registered with
this DeviceManager or a sequence length of zero if no Devices have registered with the
DeviceManager.

readonly attribute DeviceSequence registeredDevices;

3.1.3.2.8.4.6 registeredServices.

The readonly registeredServices attribute shall contain alist of Servicesthat have registered with
this DeviceManager or a sequence length of zero if no Services have registered with the
DeviceManager.

readonly attribute ServiceSequence regi steredServices;

3-72

MSRC-5000SCA
rev. 2.1

3.1.3.2.85 Genera Behavior.

The DeviceManager upon start up shall register itself with a DomainManager. This requirement
alowsthe system to be developed where at a minimum only the DomainManager’ s component
reference needs to be known. A DeviceManager shall use the DeviceManager’s
deviceConfigurationProfile attribute for determining:

1

How to obtain the DomainManager component reference, whether Naming Serviceis
being used or a DomainManager stringified IOR is being used (see aso
3.1.3.2.25.1.3),

2. Servicesto be deployed for this DeviceManager (for example, log(s)),

w

N o g A

8.

Devicesto be created for this DeviceManager (when the DCD deployondevice
element is not specified then the DCD componentinstantiation element is deployed on
the same hardware device as the DeviceManager),

Devices to be deployed on (executing on) another Device,

Devicesto be aggregated to another Device,

Mount point names for FileSystems,

The DCD’sid attribute for the DeviceManager’ s identifier attribute value, and
The DCD’s name attribute for the DeviceManager’s label attribute value.

The DeviceManager shall create FileSystem components implementing the FileSystem interface
for each OSfile system. If multiple FileSystems are to be created, the DeviceManager shall
mount created FileSystems to a FileManager component (widened to a FileSystem through the
FileSys attribute). Each mounted FileSystem name must be unique within the DeviceManager .

The DeviceManager shall supply execute operation parameters (IDs and format values) for a
Device consisting of:

A.

B.

DeviceManager IOR —The ID is“DEVICE_MGR_IOR” and the value is a string that
isthe DeviceManager stringified IOR.

Profile Name—The ID is“PROFILE_NAME” and the value isa CORBA string that
isthe full mounted file system file path name.

Device Identifier — The ID is“DEVICE_ID” and the value is a string that corresponds
to the DCD componentinstantiation id attribute.

Device Label —TheID is“DEVICE_LABEL” and the valueis astring that
corresponds to the DCD componentinstantiation usage element. This parameter is
only used when the DCD componentinstantiation usage element is specified.

Composite Device IOR - The ID is“Composite DEVICE IOR” and thevaueisa
string that is an AggregateDevice stringified IOR. This parameter is only used when
the DCD componentinstantiation element is a composite part of another
componentinstantiation element.

The execute (“execparam”) properties as specified in the DCD for a
componentinstantiation element. The DeviceManager shall pass the
componentinstantiation element “execparam” properties that have values as

3-73

MSRC-5000SCA
rev. 2.1

parameters. The DeviceManager shall pass “execparam” parameters IDs and values
as string values.

The DeviceManager shall use the componentinstantiation element’s SPD implementation code’s
stacksize and priority elements, when specified, for the execute options parameters.

The DeviceManager shall initialize and configure logical Devices that are started by the
DeviceManager after they have registered with the DeviceManager. The DeviceManager shall
configure a DCD’ s componentinstantiation element provided the componentinstantiation element
has “configure’ readwrite or writeonly properties with values. Figure 3-30 depicts a
DeviceManager startup scenario. If a Serviceis deployed by the DeviceManager, the
DeviceManager shall supply execute operation parameters (IDs and format values) consisting of:

a. DeviceManager IOR —The ID is“DEVICE_MGR_IOR” and the value is a string that
isthe DeviceManager stringified IOR.

b. Service Name—ThelID is“SERVICE_NAME” and the value is a string that
corresponds to the DCD componentinstantiation usagename element.

3-74

MSRC-5000SCA
rev. 2.1

Composite Device :

Deviceﬁanager AggregateDevice DomainTAanager

Node Boot Up ‘

‘ XML Parser

‘ Log ‘ ‘ : Device ‘

2: create FiIeSysleJﬂ
Log Executable
Parameters, Device

™M 1: create ‘

‘
MGR IOR, Log Name

3: Parse DCD and $PD files 4/ ‘
/

4; launch Device Executable Parameters, Device MGR
jlaunch | 7

IOR, Composite Device IOR, Identifier, Label,
‘ /IT‘ Software Profile, User-Defined. Step 6 thru 9 is
done for each Device in the DCD file.

5: registerServi(fe(in Object, in String) ‘ /
/
/

This step is optional, if
no relationship to an
Aggregated Device

7: addDevice(in DevicS)

6: launc|

8: registerDevice(in Device)
\

9: initialize()

| w

10: configure(in Properties)

l‘l: registerDeviceManager(in DeviceManager)

|

|

|
| |
| |
| |
| |
| |
| |
| g
| |
\ \

Figure 3-30. DeviceManager Startup Scenario

3.1.3.2.8.6 Operations.

3.1.3.2.8.6.1 registerDevice.

3.1.3.286.1.1 Brief Rationale.

The register Device operation provides the mechanism to register a Device with a
DeviceManager.

3.1.3.28.6.1.2 Synopsis.
voi d regi sterDevice(in Device registeringDevice) raises (

I nval i dObj ect Ref erence);

3.1.3.28.6.1.3 Behavior.

The register Device operation shall add the input registeringDevice to the DeviceManager’s
registeredDevices attribute when the input registeringDevice does not already exist in the
registeredDevices attribute. The registeringDevice isignored when duplicated.

3-75

MSRC-5000SCA
rev. 2.1

The register Device operation shall register the registeringDevice with the DomainManager when
the DeviceManager has already registered to the DomainManager and the registeringDevice has
been successfully added to the DeviceManager’ s registeredDevices attribute.

The registerDevice operation shall writea FAILURE_ALARM log record to a
DomainManager’s Log, upon unsuccessful registration of a Device to the DeviceManager’s
registeredDevices.

3.13286.14 Returns.

This operation does not return any value.

3.1.32.86.1.5 ExceptiongErrors.

The register Device operation shall raise the CF InvalidObjectReference when the input
registeredDeviceis anil CORBA object reference.

3.1.3.2.8.6.2 unregisterDevice.

3.13.28.6.21 Brief Rationae.

The unregister Device operation unregisters a Device from a DeviceManager.

31328622 Synopss

voi d unregisiterDevice(in Device registeredDevice) raises (
I nval i dObj ect Ref erence);

3.1.3.28.6.2.3 Behavior.

The unregister Device operation shall remove the input registeredDevice from the
DeviceManager’ s registeredDevices attribute. The unregissiter Device operation shall unregister
the input registeredDevice from the DomainManager when the input registeredDeviceis
registered with the DeviceManager and the DeviceManager is not shutting down.

The unregister Device operation shall write a FAILURE_ALARM log record, when it cannot
successfully remove aregisteredDevice from the DeviceManager’ s registeredDevi ces.
3.1.3.28.6.24 Returns.

This operation does not return any value.

3.1.3.28.6.25 ExceptiongErrors.

The unregister Device operation shall raise the CF InvalidObjectReference when the input
registeredDevice is anil CORBA object reference or does not exist in the DeviceManager’s
registeredDevices attribute.

3.1.3.2.8.6.3 registerService.

3.1.3.28.6.31 Brief Rationae.

The register Service operation provides the mechanism to register a Service with a
DeviceManager.

3.1.3.286.32 Synopsis.

void registerService(in Object registeringService, in string name) raises (
I nval i dObj ect Ref erence);

3-76

MSRC-5000SCA
rev. 2.1

3.1.3.28.6.3.3 Behavior.

The register Service operation shall add the input registeringService to the DeviceManager’s
registeredServices attribute when the input registeringService does not aready exist in the
registeredServices attribute. The registeringService isignored when duplicated.

The register Service operation shall register the registeringService with the DomainManager
when the DeviceManager has already registered to the DomainManager and the
registeringService has been successfully added to the DeviceManager’ s registeredServices
attribute.

The register Service operation shall writea FAILURE_ALARM log record, upon unsuccessful
registration of a Service to the DeviceManager’ s registeredServices.

3.1.3.28.6.34 Returns.

This operation does not return any value.

3.1.3.28.6.35 ExceptiongErrors.

The register Service operation shall raise the CF InvalidObjectReference exception when the
input registeredServiceis anil CORBA object reference.

3.1.3.2.8.6.4 unregisterService.

3.13.28.6.41 Brief Rationae.

The unregister Service operation unregisters a Service from a DeviceManager .

3.13.286.42 Synopss,

voi d unregisterService(in Cbject registeredS ervice) raises (
I nval i dObj ect Ref erence);

3.1.3.28.6.43 Behavior.

The unregister Service operation shall remove the input registeredService from the
DeviceManager’ s registeredServices attribute. The unregister Service operation shall unregister
the input registeredService from the DomainManager when the input registeredServiceis
registered with the DeviceManager and the DeviceManager is not in the shutting down state.

The unregister Service operation shall writea FAILURE_ALARM log record, when it cannot
successfully remove a registeredService from the DeviceManager’ s registeredServices.

31328644 Returns.
This operation does not return any value.

3.1.3.28.6.4.5 ExceptiongErrors.

The unregister Service operation shall raise the CF InvalidObjectReference when the input
registeredServiceisanil CORBA object reference or does not exist in the DeviceManager’s
registeredServices attribute.

3.1.3.2.8.6.5 shutdown.
3.1.3.28.651 Brief Rationae.
The shutdown operation provides the mechanism to terminate a DeviceManager .

377

MSRC-5000SCA
rev. 2.1

3.1.3.286.5.2 Synopsis.

voi d shutdown();

3.1.3.28.6.5.3 Behavior.
The shutdown operation shall unregister the DeviceManager from the DomainManager .

The shutdown operation shall perform releaseObject on all of the DeviceManager’ s registered
Devices (DeviceManager’ s registeredDevices attribute).

The shutdown operation shall cause the DeviceManager to be unavailable (i.e. released from the
CORBA environment and its process terminated on the OS), when all of the DeviceManager’s
registered Devices are unregistered from the DeviceManager.

31328654 Returns.

This operation does not return any value.

3.1.3.286.55 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.3.2.8.6.6 getComponentlmplementationld.

3.1.3.28.6.6.1 Brief Rational.

The getComponentl mplementationld operation returns the SPD implementation ID that the
DeviceManager interface used to create a component.

3.1.3.2.86.6.2 Synopsis.
string get Conponent | nplenentationld (in string conponentlnstantiationld);

3.1.3.2.8.6.6.3 Behavior.

The getComponent! mplementationld operation will return the SPD implementation ID attribute
that matches the SPD implementation that was used to create the component as identified by the
input componentinstantiation ID parameter.

3.1.3.2.8.6.6.4 Returns.

The getComponentl mplementationld operation shall return the SPD implementation 1D attribute
that matches the SPD implementation which was used to create the component as identified by
the input componentinstantiation ID parameter. The getComponentlmplementationld operation
shall return an empty string when the componentinstantiation isinvalid.

3.1.3.286.6.5 ExceptiongErrors.

This operation does not raise any exceptions.

3.1.3.3 Framework Services Interfaces.

Framework Services Interfaces shall be implemented using the CF IDL presented in Appendix C.
31331 File

3.1.3.3.1.1 Description.

The File interface provides the ability to read and write files residing within a CF-compliant,
distributed FileSystem. A file can be thought of conceptually as a sequence of octets with a
current filepointer describing where the next read or write will occur. This filepointer points to

3-78

MSRC-5000SCA
rev. 2.1

the beginning of the file upon construction of the file object. The File interface is modeled after
the POSIX/C fileinterface. (Reference File Interface UML in Figure 3-31.)

3.1.33.1.2 UML.

<<l|nterface>>

File

wafileName : string
afilePointer : unsigned long

Wread(data : out OctetSequence, length : in unsigned long) : void
Wwrite(data : in Octet Sequence) : void

%¥sizeOf() : unsigned long

%eclose() : void

WsetFilePointer(filePointer : in unsigned long) : void

<<Exception>> OctetSequence
FileException

Figure 3-31. Filelnterface UML

3.1.3.3.1.3 Types.
3.1.3.3.1.3.1 |OException.

The I0EXxception exception indicates an error occurred during aread or write operation to aFile.
The message is component-dependent, providing additiona information describing the reason
why the error occurred.

exception | OException { string nmsg; unsigned short errorCode};

3.1.3.3.1.3.2 InvalidFilePointer.

The InvalidFilePointer exception indicates the file pointer is out of range based upon the current
filesize.

exception InvalidFilePointer {};

3.1.3.3.1.4 Attributes.
3.1.3.3.1.41 fileName.

The readonly fileName attribute shall contain the file name given to the FileSystem open/create
operation. The syntax for afilename is based upon the UNIX operating system. That is, a
sequence of directory names separated by forward slashes (/) followed by the base filename. The
fileName attribute will contain the filename given to the FileSystem open operation.

readonly attribute string fil eNaneg;

3-79

MSRC-5000SCA
rev. 2.1

3.1.3.3.1.4.2 filePointer.

The readonly filePointer attribute shall contain the file position where the next read or write will
occur.

readonly attribute unsigned |ong fil ePointer;

3.1.3.3.1.5 Operations.

3.1.3.3.151 read.

3.1.33.1511 Brief Rationale.

Applications require the read operation in order to retrieve data from remote files.
31331512 Synopsis.

voi d read(out CctetSequence data, in unsigned |ong | ength) raises (
| OException);
31331513 Behavior.

The read operation shall read octets from the file referenced up to the number specified by the
length parameter and change the value of the filePointer attribute forward by the number of
octets actually read. The read operation shall only read less than the maximum number of octets
specified in the length parameter when an end of file is encountered.

31331514 Returns.

The read operation shall return viathe out Message parameter a CF OctetSequence that equals
the number of octets actually read from the File. If the filePointer attribute value reflects the end
of the File, the read operation shall return a 0-length CF OctetSequence.

3.1.33.1515 ExceptiongErrors.
The read operation shall raise the IOException when aread error occurs.

3.1.33.152 write.

3.1.33.1521 Brief Rationale.

Applications require the write operation in order to write data to remote files.
3.1.33.1522 Synopsis.

void wite(in CctetSequence data) raises (| OException);

3.1.3.31523 Behavior.

The write operation shall write datato the file referenced. If the write is successful, the write
operation shall increment the filePointer attribute to reflect the number of octets written. If the
write is unsuccessful, the filePointer attribute value shall maintain or be restored to its value prior
to the write operation call.

31331524 Returns.
This operation does not return any value.

3.1.3.3.1525 ExceptionsErrors.
The write operation shall raise the |OException when awrite error occurs.

3-80

MSRC-5000SCA
rev. 2.1

3.1.3.3.1.5.3 sizeOf.
3.133.1531 Brief Rationae.

An application may need to know the size of afilein order to determine memory allocation
requirements.

31331532 Synopsis.

unsi gned long sizeOF() raises (FileException);

3.1.3.3.1.53.3 Behavior.

There is no significant behavior beyond the behavior described by the following section.
31331534 Returns.

The sizeOf operation shall return the number of octets stored in thefile.

3.1.3.3.1.535 ExceptiongErrors.

The sizeOf operation shall raise the CF FileException when afile-related error occurs (e.g., file
does not exist anymore).

3.1.3.3.154 close
3.1.33.154.1 Brief Rationale.
The close operation is needed in order to release file resources once they are no longer needed.

3.1.3.3.154.2 Synopsis.

void close() raises (FileException);

3.1.3.3.154.3 Behavior.

The close operation shall release any OE file resources associated with the component. The
close operation shall make the file unavailable to the component.

3.1.3.3.1544 Returns.

This operation does not return any value.

3.1.3.3.1.545 ExceptiongErrors.

The close operation shall raise the CF FileException when it can not successfully close thefile.

3.1.3.3.1.55 setFilePointer.
3.1.33.1551 Brief Rationae.
The setFilePointer operation positions the file pointer where the next read or write will occur.

3.1.33.1.552 Synopsis.

void setFil ePointer(in unsigned long filePointer) raises (
I nval i dFi | ePoi nter, Fil eException);

3.1.3.3.1.553 Behavior.
The setFilePointer operation shall set the filePointer attribute value to the input filePointer.

3.1.33.1.554 Returns.
This operation does not return anyvalue.

3-81

MSRC-5000SCA
rev. 2.1

3.1.3.3.1.555 ExceptiongErrors.

The setFilePointer operation shall raise the CF FileException when the File can not be
successfully accessed to set thefilePointer attribute. The setFilePointer operation shall raise the
InvalidFilePointer exception when the value of the filePointer parameter exceeds the file size.
3.1.3.3.2 FileSystem.

3.1.3.3.2.1 Description.

The FileSystem interface defines CORBA operations that enable remote access to a physical file
system. (Reference FileSystem interface UML in Figure 3-32.)

3.1.33.22 UML.

<<Interface>>
FileSystem

#Wremov e(fileName : in string) : void

copy (sourceFileName : in string, destinationFileName : in string) : void
exists(fileName : in string) : boolean

Wlist(pattern : in string) : StringSequence

SWcreate(fileName : in string) : File

Wopen(fileName : in string, read_Only : in boolean) : File
SWmkdir(directoryName : in string) : void

Srmdir(directoryName : in string) : void

query (fileSy stemProperties : inout Properties) : void

/ uses
~ / \ A
e / . 3
<<Exception>> <<Exception>> <<Interface>> StringSequence Properties
InvalidFileN ame FileException File

Figure 3-32. FileSystem Interface UML

3.1.3.3.2.3 Types.
3.1.3.3.23.1 UnknownFileSystemProperties.

The UnknownFileSystemProperties exception indicates a set of properties unknown by the
component.

exception UnknownFi |l eSystenProperties {properties invalidProperties; };

3.1.3.3.2.3.2 fileSystemProperties Query Constants.
Constants are defined to be used for the query operation (see section 3.1.3.3.2.5.9).

const string SIZE = “SI ZE";
const string AVAI LABLE SPACE = “AVAI LABLE SPACE";

3-82

MSRC-5000SCA
rev. 2.1

3.1.3.3.2.4 Attributes.
N/A.

3.1.3.3.25 Operations.

3.1.3.3.251 remove

3.1.33.251.1 Brief Rationale.

The remove operation provides the ability to remove afile from afile system.

31332512 Synopsis.

void remove(in string fileNanme) raises(FileException, InvalidFileNanme);

3.1.3.3.25.1.3 Behavior.

The remove operation shall remove the file with the given filename.

31332514 Returns.

This operation does not return any value. |

3.1.3.3.2515 ExceptiongErrors.

The remove operation shall raise the CF InvalidFilename exception when the filenameis not a
valid filename or not an absolute pathname.

The remove operation shall raise the CF FileException when afile-related error occurs.
3.1.3.3.25.2 copy.

31332521 Brief Rationae.
The copy operation provides the ability to copy afile to another file.

3.1.33.2522 Synopsis.

void copy(in string sourceFileNane, in string destinationFileNane) raises(
I nval i dFi | eNane, Fil eException);

3.1.3.32523 Behavior.

The copy operation shall copy the source file with the specified sourceFileName to the
destination file with the specified destinationFileName.

31332524 Returns.
This operation does not return any value. |

3.1.3.3.25.25 Exceptions/Errors.
The copy operation shall raise the CF FileException when afile-related error occurs.

file name or not an absolute pathname.

3.1.3.3.253 exists.
3.133.2531 Brief Rationae.
The exists operation provides the ability to verify the existence of afile within a FileSystem.

3.1.3.3.253.2 Synopsis.
bool ean exists(in string fileNane) raises(InvalidFileNanme);

The copy operation shall raise the CF InvalidFilename exception when the filenameisnot avalid |

3-83

MSRC-5000SCA
rev. 2.1

3.1.3.3.25.3.3 Behavior.
The exists operation shall check to seeif afile exists based on the fileName parameter.

3.1.3.3.2534 Returns.
The exists operation shall return True if thefile exists, or Falseif it does not.

3.1.3.3.2535 ExceptionsgErrors.

The exists operation shall raise the CF InvalidFilename exception when fileName is not avalid
file name or not an absol ute pathname.

3133254 list.

3.1.33254.1 Brief Rationale.

The list operation provides the ability to obtain alist of filesin the FileSystem according to a
given search pattern.

3.1.3.3254.2 Synopsis.
StringSequence list(in string pattern)raises (InvalidFileNane);

3.1.3.3.254.3 Behavior.
Thelist operation shall return alist of filenames based upon the search pattern given. Thelist
operation shall support the following wildcard characters:

(1) * used to match any sequence of characters (including null).

(2) ? used to match any single character.

These wildcards may only be applied to the base filename in the search pattern given. For
example, the following are valid search patterns:

tmp/files’™* * Returnsall files and directories within the /tmp/files directory. Directory names
indicated with a*/" at the end of the name.

ltmp/files/foo* Returnsal files beginning with the letters “foo” in the /tmp/files directory.
Itmp/files/f?? Returnsall 3 letter files beginning with the letter f in the /tmp/files directory.
[*Ifiledfoo* Returnsall filesin subdirectories of the name “files” and starting with the |etters
“foo”.

[*Ifi%edf??2* Returnsdl filesin subdirectories of the name “fi”, some character and “es’ and
starting with the letter “f” followed by any 2 characters.

3.1.33.2544 Returns.

The list operation shall return a CF StringSequence of filenames matching the wildcard
specification.

3.1.3.3.2545 Exceptions/Errors.

The list operation shall raise the CF InvalidFileName exception when the input pattern does not
start with aslash "/" or cannot be interpreted due to unexpected characters.

3.1.3.3.255 create.
3.1.3.3.255.1 Brief Rationale.
The create operation provides the ability to create a new file on the FileSystem.

3-84

MSRC-5000SCA
rev. 2.1

3.1.33.2552 Synopsis.

File create(in string fileName) raises(InvalidFileNanme, FileException);

3.1.3.3.255.3 Behavior.
The create operation shall create a new File based upon the provided fileName attribute.

3.1.3.3.2554 Returns.

The create operation shall return a File component reference to the opened file. The create
operation shall return anull file component reference if an error occurs.

3.1.3.3.2555 ExceptiongErrors.

The create operation shall raise the CF FileException if the file already exists or another file
error occurred.

The create operation shall raise the CF InvalidFilename exception when afileName is not avalid
file name or not an absolute pathname.

3.1.3.3.25.6 open.

3.1.33.25.6.1 Brief Rationae.

The open operation provides the ability to open afile for read or write.

3.1.33.256.2 Synopsis.
File open(in string fileNane, in boolean read Only) raises(InvalidFileNang,

Fi | eException);

3.1.33.25.6.3 Behavior.

The open operation shall open afile based upon the input fileName. Theread_Only parameter |
indicatesif the file should be opened for read access only. The open operation shall open thefile
for write access when the read_Only parameter isfalse. |
3.1.33.2564 Returns.

The open operation shall return a File component parameter on successful completion. The open
operation shall return anull file component reference if the open operation is unsuccessful. If

the file is opened with the read_Only flag set to true, then writes to the file will be considered an |
error.

3.1.3.3.25.6.5 ExceptionsErrors.

The open operation shall raise the CF FileException if the file does not exist or another file error
occurred.

The open operation shall raise the CF InvalidFilename exception when the filenameis not avalid
file name or not an absolute pathname.

3.1.3.3.25.7 mkdir.
3.1.3.3.25.71 Brief Rationale.
The mkdir operation provides the ability to create a directory on the file system.

3.1.33.25.7.2 Synopsis.
void nkdir(in string directoryNane) raises(|InvalidFileNanme, FileException);

3-85

MSRC-5000SCA
rev. 2.1

3.1.33.25.7.3 Behavior.

The mkdir operation shall create a FileSystem directory based on the directoryName given. The
mkdir operation shall create all parent directories required to create the directoryName path
given.

31332574 Returns.

This operation does not return any value.

3.1.3.3.25.75 ExceptiongErrors.

The mkdir operation shall raise the CF FileException if afile-related error occurred during the
operation.

The mkdir operation shall raise the CF InvalidFilename exception when the directoryName is not
avalid directory name.

3.1.3.3.25.8 rmdir.
3.1.33.2581 Brief Rationae.
The rmdir operation provides the ability to remove a directory from the file system.

3.1.33.258.2 Synopsis.
void rndir(in string directoryNane) raises(InvalidFileNane, FileException);

3.1.3.325.83 Behavior.

The rmdir operation shall remove a FileSystem directory, based on the directoryName given,
only if the directory is empty (no files exist in directory).

31332584 Returns.
This operation does not return any value.

3.1.3.3.2585 ExceptiongErrors.

The rmdir operation shall raise the CF FileException when the directory does not exist, if the
directory is not empty, or another file-related error occurred.

The rmdir operation shall raise the CF InvalidFilename exception when the directoryName is not
avalid directory name.

3.1.3.3.259 query.
3.1.3.3.259.1 Brief Rationale.
The query operation provides the ability to retrieve information about a file system.

3.1.33.259.2 Synopsis.

void query(inout Properties fil eSystenProperties) raises(
UnknownFi | eSyst enProperties);

3.1.3.3.25.9.3 Behavior.

The query operation shall return file system information to the calling client based upon the
given fileSystemProperties' ID.

As aminimum, the FileSystem query operation shall support the following fileSystemProperties:

3-86

MSRC-5000SCA
rev. 2.1

1. SIZE—an ID value of “SIZE causes query to return an unsigned long long containing |
the file system size (in octets).

2. AVAILABLE SPACE —an ID value of “AVAILABLE SPACE” causesthe query
operation to return an unsigned long long containing the available space on thefile |
system (in octets),

See section 3.1.3.3.2.3.2 for the constants for the fileSystemProperties.

31332594 Returns.
This operation does not return any value. |

3.1.3.3.2595 ExceptiongErrors.

The query operation shall raise the UnknownFileSystemProperties exception when the given file
system property is not recognized.

3.1.3.3.3 FileManager.
3.1.3.3.3.1 Description.

Multiple, distributed FileSystems may be accessed through a FileManager. The FileManager
interface appears to be a single FileSystem although the actual file storage may span multiple
physical file systems. (Reference the FileManager interface UML in Figure 3-33.)

Thisis called afederated file system. A federated file system is created using the mount and
unmount operations. Typically, the DomainManager or system initialization software will
invoke these operations.

The FileManager inheritsthe IDL interface of a FileSystem. Based upon the pathname of a
directory or file and the set of mounted FileSystems, the FileManager will delegate the
FileSystem operations to the appropriate FileSystem. For example, if aFileSystem is mounted at
/ ppc2, an open operation for afilecaled/ ppc2/ profi | e. xm would be delegated to the
mounted FileSystem. The mounted FileSystem will be given the filename relative to it. Inthis
example the FileSysten' s open operation would receive/ prof i | e. xml asthe fileName
argument.

Another example of this concept can be shown using the copy operation. When aclient invokes
the copy operation, the FileManager will delegate operations to the appropriate FileSystems
(based upon supplied pathnames) thereby allowing copy of files between FileSystems.

If aclient does not need to mount and unmount FileSystems, it can treat the FileManager as a
FileSystem by CORBA widening a FileManager reference to aFileSystem reference. One can
aways widen aFileManager to a FileSystem since the FileManager is derived from a
FileSystem.

3-87

MSRC-5000SCA
rev. 2.1

3.1.3.3.3.2 UML.

<<Interface>>

FileSystem

]

<<Interface>>

FileM anager

®mount(mountPoint : in string, file_System : in FileSystem) : void
#unmount(mountPoint : in string) : void
MgetM ounts() : MountSequence

L N
InvalidFileN ame <<Interface>>
 FileSystem

Figure 3-33. FileManager Interface UML

3.1.3.3.3.3 Types.
3.1.3.3.3.31 MountType.
The MountType structure shall identify the FileSystems mounted within the FileManager.

struct Munt Type {
string nount Poi nt;
Fil eSystem fs;

b

3.1.3.3.3.3.2 MountSequence.
The MountSequence is an unbounded sequence of Mount types.
typedef sequence <Mount Type> Myunt Sequence;

3.1.3.3.3.3.3 NonExistentMount.

The NonExistentM ount exception indicates a mount point does not exist within the
FileManager.

excepti on NonExi stent Mount {};

3.1.3.3.3.34 MountPointAlreadyEXxists.

The MountPointAlreadyEXxists exception indicates the mount point is already in usein the
FileManager.

exception Mount Poi nt Al readyExi sts {};

3.1.3.3.3.35 InvalidFileSystem.
The InvalidFileSystem exception indicates the FileSystemis anull (nil) object reference.

exception InvalidFileSystem {};

3.1.3.3.3.4 Attributes.
N/A

3-88

MSRC-5000SCA
rev. 2.1

3.1.3.3.3.5 Operations.

3.1.3.3.351 mount.

3.1.3.335.1.1 Brief Rationale.

The FileManager supports the notion of a federated file system. To create afederated file
system, the mount operation associated a FileSystem with a mount point (a directory name).

3.1.33351.2 Synopsis.

void mount (in string mountPoint, in FileSystemfile_ System raises(
I nval i dFi | eNane, I|nvalidFil eSystem MountPoint Al readyExists);

3.1.3.335.1.3 Behavior.

The mount operation shall associate the specified FileSystem with the given mountPoint. A
mountPoint name shall begin witha*/”. A mountPoint nameisalogical directory namefor a
FileSystem.

31333514 Returns.

This operation does not return any value.

3.1.3.3.3515 ExceptiongErrors.

The mount operation shall raise the CF InvalidFileName exception when the input file nameis
invalid.

The mount operation shall raise the MountPointAlreadyExists exception when the mountPoint
already existsin the file manager.

The mount operation shall raise the InvalidFileSystem exception when the input FileSystemisa
null object reference.

3.1.3.3.3.5.2 unmount.
3.1.3.33521 Brief Rationale.
Mounted FileSystems may need to be removed from a FileManager.

3.1.3.33522 Synopsis.

voi d unmount (i n string nmount Point) raises(NonExistentMunt);

3.1.3.3.35.23 Behavior.

The unmount operation shall remove a mounted FileSystem from the FileManager whose
mounted name matches the input mountPoint name.

3.1.33.3524 Returns.
This operation does not return any value.

3.1.3.335.25 ExceptiongErrors.

The unmount operation shall raise the NonexistentMount exception when the mountPoint does
not exist.

3.1.3.3.35.3 getMounts.
31333531 Brief Rationae.
File management user interfaces may need to list a FileManager’ s mounted FileSystems.

3-89

MSRC-5000SCA
rev. 2.1

3.1.3.33532 Synopsis.
Mount Sequence get Mount s();

3.1.3.3.353.3 Behavior.

The getMounts operation shall return a sequence of Mount structures that describe the mounted
FileSystems.

3.1.3.33534 Returns.

The getMounts operation returns a sequence of Mount structures.

3.1.3.3.35.35 ExceptiongErrors.
This operation does not raise any exceptions.

3.1.3.3.35.4 File System Operations.

The system may support multiple FileSystem implementations. Some FileSystems will
correspond directly to aphysical file system within the system. The FileManager interface shall
support afederated, or distributed, file system that may span multiple FileSystem components.
From the client perspective, the FileManager may be used just like any other FileSystem
component since the FileManager inherits al the FileSystem operations.

The FileManager’ s inherited FileSystem operations behavior shall implement the requirements
of the FileSystem operations against the mounted file systems. The FileSystem operations ensure
that the filename/directory arguments given are absolute pathnames rel ative to a mounted
FileSystem. The FileManager’s FileSystem operations shall remove the FileSystem mounted
name from the input fileName before passing the fileName to an operation on a mounted
FileSystem.

The FileManager shall use the mounted FileSystem for FileSystem operations based upon the
mounted FileSystem name that exactly matches the input fileName to the lowest matching
subdirectory.

3.1.3.3.355 query.

3.1.3.3.355.1 Brief Rationale.

The inherited query operation provides the ability to retrieve the same information for a set of
file systems.

3.1.3.3355.2 Synopsis.

voi d query(inout Properties fileSystenProperties) raises(
UnknownFi | eSyst enProperties);

3.1.3.3.3553 Behavior.

The query operation shall return the combined mounted file systems information to the calling
client based upon the given input fileSystemProperties’ IDs. As aminimum, the query operation
shall support the following input fileSystemProperties IDs:

1. SIZE - aproperty item ID value of "SIZE" will cause the query operation to return the
combined total size of all the mounted file system as an unsigned long long property
value.

3-90

MSRC-5000SCA
rev. 2.1

2. AVAILABLE_SPACE - aproperty item ID value of "AVAILABLE_SPACE" will
cause the query operation to return the combined total available space (in octets) of
all the mounted file system as unsigned long long property value.

3.1.3.3.3554 Returns.
This operation does not return any value.

3.1.3.3.3555 ExceptionsgErrors.

The query operation shall raise the UnknownFileSystemProperties exception when theinput
fileSystemProperties parameter contains an invalid property ID

3.1.3.34 Timer.
No SCA-mandated Timer interfaces have been defined at thistime.

3.1.3.4 Domain Profile.

The hardware devices and software components that make up an SCA system domain are
described by a set of filesthat are collectively referred to asa Domain Profile. Thesefiles
describe the identity, capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up the system. All of the descriptive data about a
system is expressed in the XML vocabulary. For purposes of this SCA specification, the
elements of the XML vocabulary have been based upon the OMG’'s CORBA Components
specification (orbos/99-07-01). [Note: At the time of thiswriting, 99-07-01 is a draft standard].

The types of XML filesthat are used to describe a system's hardware and software assets are
depicted in Figure 3-34. The XML vocabulary within each of these files describes a distinct
aspect of the hardware and software assets.

Domain Profile files shall use the format of the Document Type Definitions (DTDs) provided in
Appendix D. DTD filesareinstalled in the domain and shall have “.dtd” as their filename
extension. All XML files shall have asthefirst two lines as an XML declaration (?xml) and a
document type declaration (!DOCTYPE). The XML declaration specifiesthe XML version and
whether the document is standalone. The document type declaration specifiesthe DTD for the
document. Example declarations are as follows:

-t <X 2xml version="1.0" standalone="no?>"
-“<IDOCTY PE softwareassembly SY STEM “softwareassembly.2.0.dtd”>"

3-91

MSRC-5000SCA

rev. 2.1
Domain Profile 1
1 <<DTDElement>>
DomainManager Descriptor
o.n 0.n 1
<<DTDElement>> <<DTDElement>>
Device Configuration Descriptor Software Assembly Descriptor
I
Software
) L/ i Profile
..n
<<DTDElement>> <<DTDElement>> SoftwareProfile <<DTDElement>>
Software Component Descriptor Software Package Descriptorlc * Profile Descriptor
0.1
1.n
0.n 1 /Device Configuration Profili
o1 g.n DTDElement
<< ement>>
_ S<DTDElement>> o.n <<DTDElement>> Device Configuration Descriptor
Device Package Descriptor Properties Descriptor

Figure 3-34. Relationship of Domain Profile XML File Types

3.1.3.4.1 Software Package Descriptor.

A Software Package Descriptor (SPD) identifies a software component implementation(s). A
Software Package Descriptor file shall have a“.spd.xml” extension. General information about a
software package, such as the name, author, property file, and implementation code information
and hardware and/or software dependencies are contained in a Software Package Descriptor file.

3.1.3.4.2 Software Component Descriptor.

A Software Component Descriptor (SCD) contains information about a specific SCA software
component (Resource, ResourceFactory, Device). A Software Component Descriptor file shall
have a*“.scd.xml” extension. A Software Component Descriptor file contains information about
the interfaces that a component provides and/or uses. A Software Component Descriptor for a
Device type has areference to Device Package Descriptor file.

3.1.3.4.3 Software Assembly Descriptor.

A Software Assembly Descriptor (SAD) contains information about the components that make
up an application. The ApplicationFactory uses this information when creating an application.
A Software Assembly Descriptor file shall have a“.sad.xml” extension.

3.1.3.4.4 Properties Descriptor.

A Property File contains information about the properties applicable to a software package or a
device package. A Properties File shall havea*.prf.xml” extension. A Properties File contains
information about the properties of a component such as configuration, test, execute, and
allocation types.

3.1.3.4.5 Device Package Descriptor.

A Device Package Descriptor (DPD) identifies a class of a device (as described in Section 4). A
Device Package Descriptor File shall have a“.dpd.xml” extension. A Device Package

3-92

MSRC-5000SCA
rev. 2.1

Descriptor also has Properties that define specific properties (capacity, serial number, etc.) for
this class of device.

3.1.3.4.6 Device Configuration Descriptor.

A Device Configuration Descriptor (DCD) contains information about the children Devices for a
Device, how to find the DomainManager, and the configuration information (Log, FileSystems, |
etc.) for aDevice. A Device Configuration Descriptor file shall have a“.dcd.xml” extension.
3.1.3.4.7 Profile Descriptor

A Profile Descriptor contains an absolute file name for either a Software Package Descriptor,
Software Assembly Descriptor, or a Device Configuration Descriptor. The Profile Descriptor is
derived from the Application, ApplicationFactory, and Device attributes.

3.1.3.4.8 DomainManger Configuration Descriptor.

A DomainManager Configuration Descriptor (DMD) contains configuration information for the
DomainManager. A DomainManager Configuration Descriptor file shall have a“.dmd.xml”
extension.

3.1.3.5 Core Framework Base Types.

The CF Base Types are the underlying types used in the CF interfaces,

3.1.35.1 DataType.

Thistypeisa CORBA IDL struct type, which can be used to hold any CORBA basic type or
static IDL type. Theid attribute indicates the kind of value and type (e.g., frequency, preset,
etc.). Theid can be an UUID string, an integer string, or aname identifier. The value attribute
can be any static IDL type or CORBA basic type.
struct DataType {

string id;
any val ue;

};

3.1.3.5.2 DeviceSequence.

The CF DeviceSequence type defines an unbounded sequence of Devices. The IDL to Ada
mapping has a problem with self-referential interfaces. To get around this problem, the interface
Device forward declaration has been created and this type has been moved outside of the Device
interface.

typedef sequence <Devi ce> Devi ceSequence;

3.1.3.5.3 FileException.

The CF FileException indicates afile-related error occurred. The message provides information
describing the error. The message can be used for logging the error. The error code describes
the type of error message.

exception Fil eException {unsigned short errorCode; string msg;};

3.1.3.5.4 InvadidFileName.

The InvalidFileName exception indicates an invalid file name was passed to afile service
operation. The message provides information describing why the filename was invalid.

3-93

MSRC-5000SCA
rev. 2.1

exception InvalidFileName {string msg;};

3.1.3.5.5 InvaidObjectReference.
The InvalidObjectReference exception indicates an invalid CORBA object reference error.

exception InvalidObject Reference {string nsg;};

3.1.3.5.6 InvaidProfile.
The InvalidProfile exception indicates an invalid profile error.

exception InvalidProfile {};

3.1.3.5.7 OctetSequence.
Thistypeisa CORBA unbounded sequence of octets.

typedef sequence <octet> Cctet Sequence;

3.1.3.5.8 Properties.

The propertiesisa CORBA IDL unbounded sequence of CF Data Type(s), which can be used in
defining a sequence of name and value pairs.

typedef sequence <DataType> Properties;

3.1.3.5.9 StringSequence.
This type defines a sequence of strings.

typedef sequence <string> StringSequence;

3.1.3.5.10 UnknownProperties.
The UnknownProperites exception indicates a set of properties unknown by the component.

exception UnknownProperties {Properties invalidProperties };

3.1.3.5.11 DeviceAssignmentType.

DeviceAssignmentType defines a structure that associates a component with the Device upon
which the component must execute.

Struct Devi ceAssi gnnent Type
{

string conponentl D,
string assi gnedDevi cel D

}

3.1.3.5.12 DeviceAssi gnmentSequence.

The IDL sequence, CF DeviceAssignmentSequence, provides an unbounded sequence of 0..n CF
DeviceAssignmentTypes.

Typedef sequence <Devi ceAssi gnnent Type> Devi ceAssi gnment Sequence;

3-94

MSRC-5000SCA
rev. 2.1

3.2 APPLICATIONS.

Applications are programs that perform the functions of a specific SCA-compliant product.
They must meet the requirements of a procurement specification and are not defined by the SCA
except asthey interface to the OE.

3.2.1 Genera Application Requirements.

3.21.1 OS Services.

Applications shall be limited to using the OS services that are designated as mandatory in the
SCA AEP as specified in section 3.1.1.

Applications shall perform file access through the CF File interfaces. Application file names
shall not exceed 40 characters.

To ensure controlled termination, applications shall have asignal handler installed for the
POSIX-defined SIGQUIT signal.

3.2.1.2 CORBA Services.

Applications shall be limited to using CORBA and CORBA services as specified in section
3.1.2. Useof Naming Services per 3.1.2.2.1 isoptiona; if Naming Service is not used,
applications shall include stringified IORs in their Software Profile. The use of Log interface per
section 3.1.2.3.3 isoptional if informational messages are not logged.

3.2.1.3 CF Interfaces.

Applications shall implement the CF interfaces as specified in section 3.1.3.1 using the
corresponding IDL in Appendix C. The following exceptions to the use of CF interfaces are
allowed:

1. Theuse of ResourceFactory per section 3.1.3.1.7 isoptional.

The TestableObject runTest operation (3.1.3.1.3.5.1), Resour ce stop operation (3.1.3.1.6.5.1),
and Resource start operation (3.1.3.1.6.5.2) are not called at start-up.

Each application process that uses Naming Service shall support the name parameters passed by
the DeviceManager (/ DomainName / NodeName / [other context sequences] /
ComponentName_Uniqueldentifier) (seeaso 3.1.3.2.2.5.1.3). The application shall place this
registration underneath the last naming context passed to the application. (In the naming
parameter string, each "dlash" (/) represents a separate naming context.) Application’s
executable components shall accept arguments of the form described in 3.1.3.2.6.5.1.3.

Applications components and DeviceManagers shall be provided with Domain Profile files per
3.1.34.

3.2.2 Application Interfaces.

Applications consist of one to many components. These components may be CORBA-capable
or not CORBA -capable components. For CORBA -capable components, in addition to
supporting the CF Base Application interfaces, the component can implement and use
component-specific interfaces for data and/or control. Interfaces provided by a component shall
be described in a Software Component Descriptor file as provides ports. Interfaces used by a
component shall be described in a Software Component Descriptor file as uses ports.

3-95

MSRC-5000SCA
rev. 2.1

An application may have other external interfaces besides the Application interface. The
optional external interfaces for an application are the components’ ports referenced in the
application’s SAD externalports element. The application’s external interfaces shall be visible
and defined as described herein if:

1. theapplication provides a service that is used by more than one application, or

2. the service user requires the interface to be common across access service
implementations (e.g., HCI).

Figure 3-35 and Figure 3-36 depict push and pull interfaces using the basic CORBA types and
the CF Properties for the control type. If used, push and pull interfaces shall be implemented
using the IDL in Appendix C. The push interfaces are based on up on the API Packet Building
Block (see the API Supplement to the SCA Specification).

<<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interface>>
AnyConsumer BooleanSeqConsumer CharSeqConsumer | | DoubleSeqConsumer || FloatSegConsumer

BrocessMsg() BrocessBooleanM sg() ®hrocessCharMsg() BorocessDoubleMsg() || E¥brocessFloatMsg()

<<Interface>> <<Interface>> <<Interface>> <<Interface>>
LongDoubleSegConsumer | | LongLongSeqConsurrer | | LongSeqConsumer OctetSeqConsumer

Sbrocess_ongDoubleMsg() SbrocessLongLongMsg() MbrocessLongM sg() BbrocessOctetMsg()
<<Interface>> <<Interface>>
ShortSeqConsumer StringSeqConsumer

MorocessShortM sg() MWorocesstringMsg(msg : in OF:StringSequence, options :in CF: Popetties) : void

<<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interface>>
UlongLongSeqConsumer | | UlongSeqConsumer UshortSeqConsumer | WcharSegConsumer | | WstringSeqConsumer

®hrocessULongLongMsg() ®hrocessUlongMsg() ®orocessUshortMsg() || #®brocesswcharMsg() | |E®¥processwWstringM sg()

Figure 3-35. PushPort Data Interfaces

3-96

MSRC-5000SCA

<<Interface>> <<Intaface>> <<Interface>> <<Interface>> <<Interface>>
AnyProducer BooleanSegProducer | | CharSegProducer | | DoubleSeqProducer | | FloatSeqProducer
WyetM sg() WgetBooleanM sg() ByetCharMsg() #getDoubleM sg() BgetFloatM sg()

<<Interface>> <<Interface>> <<Interface>> <<Interface>>

LongDoubleSegProducer| | LongLongSeqProducer | | LongSeqProducer | | OctetSeqProducer

®FgetLongDoubleMsg() ®getLongLongMsg() FgetLongMsg() ®getOctetM sg()

<<Interface>> <<Interface>>
ShortSeqProducer StringSeqProducer
®getShortM sg() et StringMsg(msg : out CF::StringSequence, options : out CF:Properties) : void
<<Interface>> <<Interface>> <<Interface>> <<Interface>> <<Interface>>

ul orgLT):geSéqafProducer UlongSeqProducer UshortSeqProducer| |WcharSegProducer| | WstringSegProducer
SgetULongLongMsg() gctUlongMsg() FgetUshortM sg() FgetWcharMsg() BgetWstringMsg()

Figure 3-36. PullPort Data I nterfaces

3.2.2.1 Utility Applications.

3.2.2.1.1 Installer Utility.

Installer is a generic name given to utility applications used for installing and uninstalling

devices and components within the system. Installers shall use the DomainManager,
DeviceManager, and FileManager interfaces for those operations. Installers can reside inside or

outside the system.

Figure 3-37 and Figure 3-38 illustrate device and software installations using the CF.

3-97

rev. 2.1

MSRC-5000SCA
rev. 2.1

Installer CORBA Naming ORB = o : FileManager
Services DomainManager DeviceManager
1 resolwe ‘ ‘ ‘ ‘
| narow |
LetDeviceManagers() ‘ ‘ ‘
‘ getFiIeManaFer() /I—H ‘ ‘
‘ mount(ir* string, in FileSystem) ‘ LH
I I I I
| kdir(in string) | |
copy Device XML
‘ A’ ____|Profie ‘
copy(in string, in string)
‘ ‘ Full path name
installDevice(in FileSystem, in string)— — ——r —— +—+ — - of XML profile
‘ installDevice(in FileS Ltem in slnng) ‘ LH ‘ -
set device manager
T — profile. This is
—_— .
‘ u+ mount(in string) ‘ T Foptlonal based on
f I T I the DeviceManager
/u device capability
relea\se ‘ client releases of
I DgmainManager,
__| DeviceManager, and
_ . .
] FileManager objects
release

Figure 3-37. DeviceInstallation Sequence Diagram

3-98

MSRC-5000SCA

rev. 2.1
Installer CORBA Naming ORB o : FileM anager
Senvices DomainManager
& resolve
narrow | |
getFileManager() ‘ u

i ‘
aFileSystem
o —| within the radio
mkdir(in-stimg) —
There are at least 1 to n
adds depending on the
E— _ — software components
being downloaded
‘ ‘ ‘ Full path nameA/l-H
reg\sterAppIicaHeﬂ(mstﬂng%‘ _— | ——— of XML profile ‘
client releases of
relea%e— DomainManager and
t FileManager object
% — |references
aL{ o ‘
P
rele

Figure 3-38. Software Installation Sequence Diagram

create(in string)

3.2.2.2 Service APIs.

Service APIs provide definition and standardization of common functionality and interfaces for
use by SCA applications (e.g. waveforms). Services include Network Services, Security
Services, and 1/0 Services. Each Service API is defined by a Service Definition and Transfer
Mechanism. The API Supplement to the SCA Specification provides details and requirements
for Service APIs.

3.2.2.2.1 Service Definitions.

SCA-compliant Service Definitions consist of APIs, behavior, state, priority and additional
information that provide the contract between the Service Provider and the Service User. IDL is
used to define the interfaces for Service Definitions to foster reuse and interoperability. IDL
provides a method to inherit from multiple interfaces to form anew Service Definition.

3.2.2.2.2 API Transfer Mechanisms.

A Transfer Mechanism provides the communication between a service provider and a service
user that may be co-located or distributed across different processors. Figure 3-39 shows the
standard and alternate transfer mechanism structure for APIs.

3-99

M SRC-5000SCA
rev. 2.1

OMG CORBA

Object
Reguest J CORBA IDL Other
Semantics (e.g. STREAMS)
(-
=
Message
Syntax

IHOP Other
TCP/IP q (e.g. TCP/IP)
Transports< ()

Figure 3-39. Standard and Alternate Transfer M echanism

3.3 LOGICAL DEVICE.

A logical Deviceis a software proxy for a hardware device(s). Each hardware device used by an
application Resource components shall have an associated logical Device interface. Logical
Deviceinterfaces include Device, LoadableDevice, ExecutableDevice, and AggregateDevice.
Thelogical Device interfaces are depicted in Figure 3-40.

3-100

MSRC-5000SCA

<<Interface>>
Resource

Wstart()
®stop()

®yetPort()

<<Interface>>
Device

<<lInterface>>
AggregateDevice

gdevices : DeviceSequence

< —

WaddDevice()
®removeDevice()

gsageState : UsageType
wadminState : AdminType
woperationalState : OperationalType
gAdentifier : string

asoftwareProfile : string

gdabel : string

sscompositeDevice : AggregateDevice

®allocateCapacity()
®deallocateCapacity()

<<Interface>>
LoadableDevice

®load()
®unload()

<<Interface>>
ExecutableDevice

®terminate()
®execute()

Figure 3-40. Device and DeviceManager I nterfaces Relationships

3-101

rev. 2.1

M SRC-5000SCA
rev. 2.1
3.3.1 OS Services.

Logical Devices are not restricted to using the services designated as mandatory by the SCA
AEP as specified in 3-1.

A logica Device's executable parameters shall accept arguments of the form described in
3.1.3.2.6.5.1.3.

A logica Device shall accept the executable parameters as specified described in 3.1.3.2.8.5.

3.3.2 CORBA Services.

Logica Devices shall be limited to using CORBA and CORBA services as specified in section
3-2.

3.3.3 CF Interfaces.

A logica Device implements one of the following CF interfaces. Device, LoadableDevice or
ExecutableDevice.

In addition to the requirements stated in the Device interface (section 3.1.3.2.4), alogical Device
has the requirements as stated in the Resource, PropertySet, Lifecycle, Port, PortSupplier and
TestableObject interfaces.

A logica Device shall register itself with a DeviceManager using the executable DeviceManager
IOR parameter per 3.1.3.2.8.5.

An aggregated logical Device shall add itself to a composite Device using the executable
Composite Device IOR parameter per 3.1.3.2.8.5.

The executable parameters (PROFILE_NAME, COMPOSITE DEVICE_IOR, DEVICE_ID and
DEVICE_LABEL) asdescribed in 3.1.3.2.8.5 shall be used to set the Device' s softwareProfile,
compositeDevice, identifier, and label attributes.

A Device that has other Devices associated with it shall provide a“provides’ port that
implements the AggregateDevice interface. The “provides’ port name shall be named
“CompositeDevice”.

Additional service APIs and their ports beyond the CF adhere to the requirements as described in
section 3.2.2.2.

3.3.4 Profile

Each logical Device shall have a SPD, SCD, DPD, and one or more Properties Descriptors as
described in section 3.1.3.4. For each logical Device, alocation properties shall be defined in its
referenced SPD’s property file.

34 GENERAL SOFTWARE RULES.

This section identifies those rules and recommendations specific to the Software Architecture
that are not specifically addressed el sewhere in this specification.

3-102

MSRC-5000SCA
rev. 2.1

3.4.1 Software Development Languages.

3.4.1.1 New Software.

Software developed for an SCA-compliant product shall be developed in a standard higher order
language, except at provided below, for ease in processor portability. The goal of new
development should be to provide SW that is independent from platform and environment
details, ensuring minimal portability issues.

An exception is alowed to this requirement, if there are program performance requirements that
require the use of assembly language programming.

3.4.1.2 Legacy Software.

Legacy software is not required to be rewritten in a standard higher order language. Legacy
software shall be interfaced to the core framework in accordance with this specification.

3-103

MSRC-5000SCA
rev. 2.1

4 HARDWARE ARCHITECTURE DEFINITION

This section describes the methodol ogy of using the SCA as the basis for partitioning the
Hardware (HW) Architecture in terms of an Object-Oriented approach. This Object-Oriented
approach describes a hierarchy of hardware class and subclass objects that represent the
architecture. Characteristics, or attributes, associated with each hierarchical class form the
domain independent basis for the definition of each physical hardware device. Section 4.5
specifies the hardware requirements.

41 BASIC APPROACH.

The definition of the HW Architecture consists of a set of HW classes that are common across al
domains. Thetop-level hardware classes correspond with top-level hardware functions. These
top-level HW classes are further refined into subclasses that correspond with lower-level
hardware functions. The attributes associated with these classes and/or subclasses describe the
individual class or subclass contributions to system features and capabilities.

During implementation, this hardware class structure can be used to describe the hardware
implementation in accordance with procurement specifications. This object-oriented approach
enables a consistent application of the HW architecture (classes and rules) across the various
domains (i.e., Handheld, Dismounted, Vehicular, Airborne, and Maritime/Fixed).

Attributes and the HW class structure will potentially have multiple users over the lifetime of
each hardware module. Initially, when the radio system engineer is designing aradio system,
class attributes provide a place to sort top level requirements, either by direct allocation or by
analysis and allocation. After physical partitioning is performed, the attributes outline HW
module(s) specification(s). The hardware designer, through the modul e specifications, in effect,
uses the attributes to characterize the design of the modules.

Software applications also become users of HW attributes. The attributes are reported to the
DomainManager through the Device Profiles. As software applications become more
sophisticated, they will become increasingly dependent upon HW attributes, used potentially
both as variables or in software dependency checks in the applications.

4.2 CLASSSTRUCTURE.

Class structure is the hierarchy that depicts how object-oriented classes and subclasses are
related. The SCA hardware class structure identifies functional elementsthat in turn areused in
the creation of physical system elements (HW devices). Using this object-oriented approach,
devices "inherit" from the class structure and share common physical and interface attributes,
thus making it easier to identify and compare device interchangeability. (In thisuse, the term
“inherit” simply means that attributes at a higher class-level are common with all the subclasses.
In the following figures, this feature is shown by a hollow arrow, the UML symbol for
“generalization”.)

Hardware devices represent physical implementations whose attributes are assigned specific
values. In this sense, the attributes define domain-neutral class objects (abstract classes) and the
values of the class attributes then place specific requirements on the implementation. HW
devicesinherit common attributes via the hardware class structure. Devices can then be

4-1

MSRC-5000SCA
rev. 2.1

developed to satisfy procurement-specific requirements. All hardware devices will have values
assigned to the class attributes. (The attributes shown in the figuresin this section are
representative of the attributes associated with the respective classes and are provided for
illustrative purposes.)

4.2.1 Top Leve Class Structure.

The top-level SCA-Compliant Hardwar e class defines the system procurement-associated
attributes such as maintainability and availability requirements, as well as, physical,
environmental and device registration parameters. (Reference Figure 4-1.) The Chassis class
has unique physical, interface, platform power and external environment attribute values that are
related to external factors rather than individual modules within the chassis. The HWModule(s)
class represents awide variety of SCA-compliant physical hardware that inherits attributes from
the SCA-Compliant Hardware superclass. Subclasses of HWModule(s) inherit al its attributes,
including those shown in Figure 4-2. Stereotypes, indicated by enclosure in double brackets
(<<stereotype>>), areincluded in the class diagrams to better group and manage attribute |abels
and titles. The stereotypes are generally associated with particular users of the attributes. The
<<Registration>> stereotype attributes are those that become part of a Device Profile as reported
through a Device Package Descriptor file. All other stereotypes indicate attributes that, when
reported, become part of the Device Profile as reported through a Property File.

SCA-Compliant Hardware
Maintainability
Availability
FormFactor
Environment
Power
<<Registration>>>
DeviceName
DeviceClass
Model Number®
Serial Number
Manufacturer

(¢]

/e
[

© Chassis HW Module(s)

NumberOfSlots <<Programmability>>

BackPlaneType <<Performance> >
PowerRequirements
CoolingRequirements

(¢]

Figure4-1. Top Level Hardware Class Structure

The Chassis subclass includes the attributes of number of module slots, form factor, back plane
type, platform environmental, power and cooling requirements. The HWModule(s) classisthe
parent to all module sub-classes and provides the basic attributes that are inherited by al

4-2

MSRC-5000SCA
rev. 2.1

hardware modules. Asthe class structure hierarchy extends from the more general top level
down into the more specific lower levels, each subclass inherits the attributes of all the preceding
hierarchy of classes. Module compatibility can be ascertained by comparing appropriate
instantiated attributes.

4.2.2 HWModule(s) Class Structure.

The JTRS concepts of hardware reuse, extendibility and expandability dictate a modular
implementation approach. The hardware architecture presents two very distinct module types.
The first type contains software intensive processing elements (i.e., Digital Signal Processor
(DSP) modules and Genera Purpose Processor (GPP) cards), while the second type contains
non-programmable functionality (such as RF elements). As programmable capability and
programmabl e hardware technol ogies evolve, functionality will migrate from totally embedded
hardware towards more software intensive applications of the hardware functions.

Thereisablurring of hardware/software functionality as systems are implemented. Functions
are realized from a combination of both hardware embedded functions and software functions.
Thus the HWModul e(s) class framework shown in figure 4-2 includes functional classesthat are
strictly programmabl e in nature (Processor) and others that have embedded functionality. This
provides the framework necessary to construct the elements for a software programmabl e radio.

HW Module(s)
<<Programmability>>
<<Performance>>

RF Modem Processor INFOSEC 1/O

Reference Sandard

Figure4-2. Hardware Module Class Structure

The hardware class structure is expandabl e through the addition of new classes or through the
addition of new attributes to existing classesto allow for future growth capabilities. Stereotypes,
indicated by enclosure in double brackets (<<stereotype>>), are included in the class diagrams to
better group and manage attribute labels and titles.

4.2.3 Class Structure with Extensions.

Each hardware class can be extended further to provide additional attribute granularity. This
methodology provides both aformalized structure for hardware definition and the inherent
flexibility needed to allow for evolving requirements as well as hardware and software
capabilities.

4-3

MSRC-5000SCA
rev. 2.1

4231 RF Class Extension.

The subclasses in figure 4-3 extend the RF class hierarchy. These subclasses relate to the typical
range of RF hardware devices such as, Antennas, Receivers, Exciters, and Power Amplifiers. As
with al HW subclasses, the attributes contained within these RF subclasses attempt to
encapsulate the functionality that can be used to describe the unique mix of features and
capabilities of the associated hardware device.

Cosite performance considerations place a specia burden on the RF class. Theintelligent
management of cosite performance requires monitoring and control of many of the RF subclass
modules. The hardware architecture supports cosite operation in two ways. First, thereisa
cosite sub-class. This encapsulates the hardware that is specifically provided for cosite
operation. Second, a <<CositePerformance>> stereotype groups those attributes useful for a
cosite manager application. Such an application, while not part of the architecture itself, is an
implementation-specific capability to coordinate RF assets.

Antennas have historically been passive elements typically attached to the structure that houses
the communications system. While remaining very domain and platform unique, technology
growth continually improves the capabilities that can be performed in the communications
system ‘front end', necessitating the inclusion of antennas in the core of JTRS. "Smart" antennas
include receive, transmit, and cosite mitigating elements, blurring the functional separation lines.
For this reason and because of the key role that antenna systems play in cosite management,
“Antenna’ isincorporated in the class structure as an RF subclass.

MSRC-5000SCA
rev. 2.1

RF
<<Performance>>
FrequencyRange
Channelization
TuningSpeed
PowerLevel
<<CositePerformance>>
DynamicRange
// \\
T | |
Receiver Exciter Power Amplifier
Antenna NoiseFigure Distortion Distortion
VSWR Up/DownConversion <<P§rformanc@> VSWR_Tol erance
Gain << Perfprmance» Carri erGenergn on | nputProtectl on
BeamStearing Bandvyl <_jth D/AConversion DrivePower _
FieldOf View Selectivity D/AThreshold Ou_tputLevellng
Polarization A/DSampl eRate D/ASampleRate Gain '
Transmit/Receive A/DResolution AGC _ Outp_utProtectl on
Nulling A/DThreshold DataQonyas on ReceiverConnection
AGC Equalization <<Performance>>
Equalization PowerControl PAType
Blanking <<CositePerformance>> Operational Modes
<<CositePerformance>> Spurs <<CositePerformance>>
Spurs PhaseNoise WidebandNoiseFloor
PhaseNoise WidebandNoi seFloor ReverselM
<<WaveFormSupport>> <<WaveFormSupport>> <<WaveFormSupport>>
SupportedWaveforms SupportedWaveforms SupportedWaveforms
EMP/Lightning Protection Cosite Mitigation RE Distribution
ResponseTime Attenuation |solation
Voltagel evel Bandwidth NumberOfChannels
EnergyL evel DiversityCapability

Figure4-3. RF Class Extension

4.2.3.2 Modem Class Extension.

The Modem class shown in figure 4-4 has subclasses that encapsulate the attributes of

modul ation and demodulation functions. The Modem class also contains attributes that can be
used to describe the range of signal processing and data conversion capabilities such as spreading
and de-spreading. The <<WaveFormSupport>> stereotype labels the attribute of
SupportedWaveforms. Thisis an attribute indicating specifically what waveforms the modem is

capable of performing.

MSRC-5000SCA
rev. 2.1

Modem
TRANSEC
<<WaveFormSupport>>
SupportedWaveforms
<<Performance>>
DataConversion
DynamicRange
CodingRate
CodingType
Equalization
InterleaveType
InterleaveRate
ModulationType
ModulationRate
SampleRate
/\
[T \
Modulator Demodulator
<<Performance>> DiversityCombining
PreM odulationFiltering FrequencyTracking
Multiplexing InterferenceExcision
Spreading Multipath
<<Performance>>
CarrierSync
Symbol Sync
CarrierSense
Despreading
DeMultiplexing

Figure 4-4. Modem Class Extension

4.2.3.3 Processor Class Extension.

The Processor class shown in figure 4-5 directly supports software operations by providing the
processors, memory, and supporting functions. Devices derived from this class include General
Purpose Processors, Digital Signal Processors, and extend to modules utilizing programmable
logic devices (FPGAS, etc.). The class captures the attributes of processing devices needed by
the system resources. This Processor class represents the type of hardware that, in itself,
essentially has no unique radio-functional capabilities of its own. Its actual use, or personality, is
afunction of the software that is loaded into and executed on it. It can be envisioned that as
processor speeds and software capabilities evolve, this class of hardware will tend to dominate
future radio systems while some of the other hardware specific functions will be replaced by
processors and software. As this happens, the attributes associated with function and
performance will effectively migrate to the software applications that are running on the host
processors.

MSRC-5000SCA
rev. 2.1

Processor
<<Programmability>>
Type
ClockSpeed
MemaoryCapacity
ProcessingCapability
OperatingSystem

GPP DSP FPGA

Figure 4-5. Processor Class

4.2.3.4 INFOSEC Class.

The INFOSEC class provides structure for a hardware device that is described by the type of
cryptographic features it supports and certifications for which it has been qualified. Figure 4-6
lists INFOSEC class attributes.

INFOSEC

Certification
Accreditation
Type

Alarms

Number of Channels
Anti-Tamper
Authentication
Bypass Mode

Fill Type

Keys

MLS

TEMPEST
Network Security
OTAR

Validation

Zeroize Capability

Authentication()
Access Control()
Key Management()

T

Encrypt/Decrypt Access Control
COMSEC Type Type
TRANSEC Type Method
Algorithms Monitor Access
Sense Pattern Monitor Users
Synch/Resynch Control Data Paths

Key Management()

Figure4-6. INFOSEC Class

4-7

MSRC-5000SCA
rev. 2.1

4.2.35 1/O Class Extension.

The 1/0O Class shown in figure 4-7 provides representation for general physical connectivity and
isnot limited to just user interfaces.

For every hardware device, the critical interfaces are those that are presented to the “ outside
world”. The definition of acritica interface is dependent on the class hierarchy level at which
the hardware deviceis being viewed. For example, if the HW device is a complete radio system,
it inherits attributes from the chassis class and its critical interfaces are defined at the chassis
physical boundary. Additionally, each module within the radio system has critical interfaces
unique to it; and its 1/O attributes are inherited from the 1/0O subclass.

[e)
PinAssignment(s)

/\
\ - \
| | |
Digital Discrete| | Digital Bus RF I/O Analog Photonic || Human-Machine
LogicType Serial Impedance | | Impedance Keypad
FanIn/Out Parallel VSWR SignalLevel Display
Standard SignalLevel| | Bandwidth Microphone
FanIin/Out Frequency Speaker
Network

Figure4-7. 1/0O Class Extension

4.2.4 Attribute Compostion.

As hardware technology evolves, hardware modules will encompass increased levels of
functionality due to higher levels of integration. Thiswill allow more functiona hardware
classes to be realized within individua physical hardware modules. The function of the
individual classes remains the same, but they are physically realized on the same circuit card or
module. UML provides the ‘composition’ relationship to represent this. An example of thisis
shown in figure 4-8, showing a module that provides receive, transmit, and

modul ation/demodul ation capabilities, and using the hardware class model to illustrate this
fusion of capabilities. The resultant attribute list for the module will be composed of the unique
mix of features encapsulated by the four hardware classes from which it is composed. Since
each of theindividual classesinherit attributes from its respective higher level class, the
hardware module also inherits from the higher levels.

MSRC-5000SCA
rev. 2.1

<Receiver> <Demodulator>| | <Exciter> | <Modulator>

<Company XY Z Transceiver/Modem>

Figure 4-8. Typical Hardware Device Description using the SCA HW Class Structure

4.3 DOMAIN CRITERIA.

As communications systems assume multi-band, multi-channel, and multi-mission capabilities, a
dilemmaarises. When trying to satisfy the needs of both the small, highly mobile user
(Handheld Domain) and the large command center (Maritime/Fixed Domain), it is evident that
distinctly different mission and platform constraints exist. Offering the same solution for both
extremes is obviously not the optimum — or cost effective — solution for either. The highly-
mobile user requires a compact, environmentally-robust terminal containing embedded message
processing, sized sufficiently to their needs, but not so large as to meet the intensive
filtering/formatting/networking needs of the command center. The command center, on the other
hand, requires environmental robustness only to the inhabited level. There are many, real
barriers to complete commonality - cost being the largest. The most significant hardware cost-
savings potentia is the use of COTS standards, technology, and components, where possible.
The SCA provides the standard for use of COTS technology, design reuse across products, and
an open, well-documented architecture allowing multiple contractors to implement an entire
system or only a portion of it.

44 PERFORMANCE RELATED ISSUES.

A particular implementation of the SCA can have significant impact on the equipment
performance, especialy in the case of complex waveforms and multi-channel radios. The areas
of cosite performance and system control timing have been identified as two key performance
areas for careful consideration. Discussions of the cosite effects and mitigation techniques
applicable to the physical implementation of the architecture are in the SRD.

45 GENERAL HARDWARE RULES.

Requirements placed on hardware objects by the SCA reflect a balance between the need to
support extendibility and interchangeability, and the support of technology growth and domain
constraints. Theresult isalimited set of specific rules (listed below) augmented by
implementation guidelines, much of which isin the SRD.

45.1 DeviceProfile.

Each supplied hardware device shall be provided with its associated Domain Profile files as
defined in section 3.1.3.4, Domain Profile.

4-9

MSRC-5000SCA
rev. 2.1

45.2 Hardware Critical Interfaces.

45.2.1 Interface Definition.

Hardware critical interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction. Critical interfaces are those interfaces at the physical boundary
of areplaceable device that are required for the operation and maintenance of the device.

45.2.2 Interface Standards.

Hardware critical interfaces shall be in accordance with commercia or government standards,
unless there are program performance requirements that require a non-standard interface. 1f so
required, the non-standard interface shall be clearly and openly documented to the extent that
interfacing or replacement hardware can be developed by other parties without restriction.

45221 Interface Salection.

In addition to the above, interface selection should consider the availability of supporting
products that have wide usage, are available from multiple vendors, and are expected to have
long-term support in the industry.

4.5.3 Form Factor.

The form factor of the hardware objects should be, where practical, in accordance with
commercia standards.

45.4 Modularity.

The partitioning of the hardware architecture into modules should be chosen to allow for ease of
upgrade through technology insertion or replacement of modules based on form, fit, and
function. Module boundaries are critical interfaces as defined in 4.5.2.1.

4-10

MSRC-5000SCA
rev. 2.1

5 SECURITY ARCHITECTURE DEFINITION

The security requirements in this section apply to the CF when security isimplemented in a
JTRS. Additiona security requirements, beyond the CF, are in the Security Supplement to the
SCA.

5.1 ADDITIONAL CF SECURITY REQUIREMENTS.

5.1.1 Application.

The Application releaseObject operation shall only disconnect components' ports that are
authorized by an authentication service.

The Application releaseObject operation shall request removal of the Application’s Ports' access
setups from the access control database.

The Application releaseObject operation shall 1og a Security_Alarm event when unable to
disconnect components' ports because authorization was not granted by an authentication
service.

Application components SPD implementation dependency propertyref elements shall indicate a
dependency to ared or black device (directly or indirectly).

5.1.2 ApplicationFactory.

The ApplicationFactory create operation shall only create components that are authorized by an
authentication service.

The ApplicationFactory create operation shall only connect components’ ports together that are
authorized by an authentication service.

If port connections between components need to be access-controlled during execution, then the
ApplicationFactory create operation shall provide an update to the access control database. The
ApplicationFactory create operation shall provide updates to an access control database for all
components ports connections as stated in the application's SAD file.

The ApplicationFactory shall log a Security_Alarm event when unable to connect ports or create
components because authorization was not granted by an authentication service.

5.1.3 DomainManager.

The DomainManager install Application operation shall send the information specified in the
Security Supplement to the control/bypass mechanism Resource for the black-side components
being accessed by red-side components and for red-side components being accessed by black-
Side components.

The DomainManager uninstall Application operation shall request removal of the application’s
information specified in the Security Supplement from the control/status bypass mechanism.

Devices SPD properties shall have an allocation property that indicates ared or black device.
Parent Devices shall send their child Devices information specified in the Security Supplement to

51

MSRC-5000SCA
rev. 2.1

the control/status bypass mechanism. A parentless Device shall send its information specified in
the Security Supplement to the control/status bypass mechanism.

5-2

MSRC-5000SCA
rev. 2.1

6 COMMON SERVICESAND DEPLOYMENT CONSIDERATIONS

6.1 COMMON SYSTEM SERVICES.

This section will define any common system services that are not part of the CF but are
considered part of the SCA. None have been identified at thistime.

6.2 OPERATIONAL AND DEPLOYMENT CONSIDERATIONS.

This section will address common interfaces or features necessary to support deployment of
SCA-compliant systemsin the field. None have been identified at thistime.

6-1

6-2

MSRC-5000SCA
rev. 2.1

MSRC-5000SCA
rev. 2.1

7 ARCHITECTURE COMPLIANCE

This section defines the criteriafor certifying candidate system, hardware, and software application
products to this specification.

This specification may be applied to procurement of a multitude of radio products and
communication systems. In addition, this specification may aso be applied to hardware-only or
software-only products that would be hosted on SCA-compliant systems.

7.1 CERTIFICATION AUTHORITY.

The JTRS Joint Program Office (JPO) holds the authority to certify that a candidate product meets
the requirements of this specification. This authority may be transferred, in time, to a general
standards body.

7.2 RESPONSIBILITY FOR COMPLIANCE EVALUATION.
The responsibility for performing the evaluation of a candidate product's complianceis TBD. This
body will determine the test methods and procedures used to establish compliance.

7.3 EVALUATING COMPLIANCE.

Compliance to this specification is defined as meeting al requirements, except as specificaly
allowed herein. Products submitted as " SCA-Compliant” will be evaluated for compliance in
accordance with the test methods and procedures established per section 7.2.

74 REGISTRATION.

Documentation of some elements of an SCA implementation, as defined in sections 3 and 4, will be
submitted to a Registration Body to be established, initialy, by the JTRS JPO.

[The establishment, membership, rules, and operation of Registration Bodies are beyond the scope
of the SCA.]

Some elements of an SCA implementation are identified with aUUID. Asusedin this
specification, the UUID is defined by the DCE UUID standard (adopted by CORBA). (OSF
Distributed Computing Environment, DCE 1.1 Remote Procedure Call) No centralized authority is
required to administer UUIDs (beyond the one that allocates |IEEE 802.1 node identifiers [Medium
Access Control (MAC) addresses]).

7-1

	INTRODUCTION
	SCOPE.
	COMPLIANCE.
	Joint Technical Architecture Compliance.

	DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS.
	Conventions and Terminology.
	Unified Modeling Language.
	Interface Definition Language.
	eXtensible Markup Language.
	Color Coding.
	Requirements Language.
	CF Interface and Operation Identification.

	Definitions.

	DOCUMENT CONTENT.
	APPLICABLE DOCUMENTS.
	Government Documents.
	Commercial Documents.

	OVERVIEW
	ARCHITECTURE DEFINITION METHODOLOGY.
	ARCHITECTURE OVERVIEW.
	Overview - Software Architecture.
	Bus Layer (Board Support Package).
	Network & Serial Interface Services.
	Operating System Layer.
	Core Framework.
	CORBA Middleware.
	Application Layer.
	Applications.
	Adapters.

	Software Radio Functional Concepts.
	Software Reference Model.
	ModemDevice Functionality.
	NetworkResource and LinkResource Functionality.
	I/ODevice Functionality.
	SecurityDevice Functionality.
	UtilityResource Functionality.

	System Control.

	Networking Overview.
	External Networking Protocols.
	SCA Support for External Networking Protocols.

	Overview - Hardware Architecture.

	O
	OPERATING ENVIRONMENT.
	
	Operating System.
	Middleware & Services.
	CORBA.
	CORBA Extensions.
	Naming Service.

	Log Service.
	Use of Log Service.
	LogServiceModule.
	Types.
	LogLevelType.
	ProducerLogRecordType.
	LogLevelSequence.

	Log.
	Description.
	UML.
	Types.
	InvalidParamException.
	LogEmptyException.
	LogTimeType.
	OperationalStateType.
	AdministrativeStateType.
	AvailabilityStatusType.
	LogFullActionType.
	RecordIDType.
	LogRecordType.
	LogRecordSequence.
	ProducerLogRecordSequence Type.

	Attributes.
	Operations.
	getMaxSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setMaxSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getCurrentSize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getNumRecords.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getLogFullAction.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setLogFullAction.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getAvailabilityStatus.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getAdministrativeState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setAdministrativeState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getOperationalState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	writeRecords.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getRecordIdFromTime.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	retrieveById.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	clearLog.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	destroy.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Core Framework.
	Base Application Interfaces.
	Port.
	Description.
	UML.
	Types.
	InvalidPort.
	OccupiedPort.

	Attributes.
	Operations.
	connectPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	disconnectPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	LifeCycle.
	Description.
	UML.
	Types.
	InitializeError.
	ReleaseError.

	Attributes.
	Operations.
	initialize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	TestableObject.
	Description.
	UML.
	Types.
	UnknownTest.

	Attributes.
	Operations.
	runTest.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	PortSupplier.
	Description.
	UML.
	Types.
	UnknownPort.

	Attributes.
	Operations.
	getPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	PropertySet.
	Description.
	UML.
	Types.
	InvalidConfiguration.
	PartialConfiguration.

	Attributes.
	Operations.
	configure.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Resource.
	Description.
	UML.
	Types.
	UnknownPort.
	StartError.
	StopError.

	Attributes.
	Operations.
	stop.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	start.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	The getPort operation shall raise an UnknownPort exception if the port name is invalid.ResourceFactory.
	Description.
	UML.
	Types.
	ResourceNumType.
	InvalidResourceNumber.
	ShutdownFailure.

	Attributes.
	Operations.
	createResource.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseResource.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	shutdown.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Framework Control Interfaces.
	Application.
	Description.
	UML.
	Types.
	ComponentProcessIdType
	ComponentProcessIdSequence
	ComponentElementType
	ComponentElementSequence

	Attributes.
	profile.
	name.
	componentNamingContexts.
	componentProcessIds.
	componentDevices.
	componentImplementations.

	General Class Behavior.
	Operations.
	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ApplicationFactory.
	Description.
	UML.
	Types.
	CreateApplicationRequestError Exception.
	CreateApplicationError Exception.
	Exception InvalidInitConfiguration

	Attributes.
	name.
	softwareProfile.

	Operations.
	create.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	DomainManager.
	Description.
	UML.
	Types.
	exception ApplicationInstallationError.
	InvalidIdentifier.
	DeviceManagerSequence.
	ApplicationSequence.
	ApplicationFactorySequence.
	DeviceManagerNotRegistered Exception

	Attributes.
	deviceManagers.
	applications.
	applicationFactories.
	fileMgr.
	DomainManagerProfile.

	General Class Behavior.
	Operations.
	registerDeviceManager.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	installApplication.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDeviceManager.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	uninstallApplication.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Device.
	Description.
	UML.
	Types.
	InvalidState.
	InvalidCapacity.
	AdminType.
	OperationalType.
	UsageType.

	Attributes.
	usageState.
	adminState.
	operationalState.
	identifier.
	softwareProfile.
	label.
	compositeDevice.

	Operations.
	allocateCapacity.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	deallocateCapacity.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseObject.
	Description.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	LoadableDevice.
	Description.
	UML.
	Types.
	LoadType.
	InvalidLoadKind.

	Attributes.
	Operations.
	load.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unload.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ExecutableDevice.
	Description.
	UML.
	Types.
	InvalidProcess.
	InvalidFunction.
	ProcessID_Type.
	InvalidParameters.
	InvalidOptions.
	STACK_SIZE_ID.
	PRIORITY_ID.

	Attributes.
	Operations.
	execute.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	terminate.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	AggregateDevice.
	Description.
	UML.
	Types.
	Attributes.
	devices.

	Operations.
	addDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	removeDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	DeviceManager.
	Description.
	UML.
	Types.
	ServiceType.
	ServiceSequenceType.

	Attributes.
	identifier.
	label.
	filesys.
	deviceConfigurationProfile.
	registeredDevices.
	registeredServices.

	General Behavior.
	Operations.
	registerDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterService.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	shutdown.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getComponentImplementationId.
	Brief Rational.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Framework Services Interfaces.
	File.
	Description.
	UML.
	Types.
	IOException.
	InvalidFilePointer.

	Attributes.
	fileName.
	filePointer.

	Operations.
	read.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	write.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	sizeOf.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	close.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setFilePointer.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	FileSystem.
	Description.
	UML.
	Types.
	UnknownFileSystemProperties.
	fileSystemProperties Query Constants.

	Attributes.
	Operations.
	remove.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	copy.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	exists.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	list.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	create.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	open.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	mkdir.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	rmdir.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	FileManager.
	Description.
	UML.
	Types.
	MountType.
	MountSequence.
	NonExistentMount.
	MountPointAlreadyExists.
	InvalidFileSystem.

	Attributes.
	Operations.
	mount.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unmount.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getMounts.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	File System Operations.
	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Timer.

	Domain Profile.
	Software Package Descriptor.
	Software Component Descriptor.
	Software Assembly Descriptor.
	Properties Descriptor.
	Device Package Descriptor.
	Device Configuration Descriptor.
	Profile Descriptor
	DomainManger Configuration Descriptor.

	Core Framework Base Types.
	Data Type.
	DeviceSequence.
	FileException.
	InvalidFileName.
	InvalidObjectReference.
	InvalidProfile.
	OctetSequence.
	Properties.
	StringSequence.
	UnknownProperties.
	DeviceAssignmentType.
	DeviceAssignmentSequence.

	APPLICATIONS.
	General Application Requirements.
	OS Services.
	CORBA Services.
	CF Interfaces.

	Application Interfaces.
	Utility Applications.
	Installer Utility.

	Service APIs.
	Service Definitions.
	API Transfer Mechanisms.

	LOGICAL DEVICE.
	OS Services.
	CORBA Services.
	CF Interfaces.
	Profile

	GENERAL SOFTWARE RULES.
	Software Development Languages.
	New Software.
	Legacy Software.

	HARDWARE ARCHITECTURE DEFINITION
	BASIC APPROACH.
	CLASS STRUCTURE.
	Top Level Class Structure.
	HWModule(s) Class Structure.
	Class Structure with Extensions.
	RF Class Extension.
	Modem Class Extension.
	Processor Class Extension.
	INFOSEC Class.
	I/O Class Extension.

	Attribute Compostion.

	DOMAIN CRITERIA.
	PERFORMANCE RELATED ISSUES.
	GENERAL HARDWARE RULES.
	Device Profile.
	Hardware Critical Interfaces.
	Interface Definition.
	Interface Standards.
	Interface Selection.

	Form Factor.
	Modularity.

	SECURITY ARCHITECTURE DEFINITION
	ADDITIONAL CF SECURITY REQUIREMENTS.
	Application.
	ApplicationFactory.
	DomainManager.

	COMMON SERVICES AND DEPLOYMENT CONSIDERATIONS
	COMMON SYSTEM SERVICES.
	OPERATIONAL AND DEPLOYMENT CONSIDERATIONS.

	ARCHITECTURE COMPLIANCE
	CERTIFICATION AUTHORITY.
	RESPONSIBILITY FOR COMPLIANCE EVALUATION.
	EVALUATING COMPLIANCE.
	REGISTRATION.

